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Generalization of 2-Corner Frequency Source Models Used in SMSIM 

David M. Boore 

26 March 2013, corrected Figure 1 and 2 legends on 5 April 2013, additional small corrections 
on 29 May 2013 

Many of the source spectra models available in SMSIM have two corner frequencies, but only 
one of these models has the option of varying the high-frequency spectral level, as the other 2-
corner models are completely determined by specified relations between the corner frequencies 
and magnitude (see Tables 2 and 3 in Boore, 2003, for a concise and convenient summary of the 
various models).   In this note I provide equations for generalizing two-corner models to allow 
the high-frequency source spectral level to be determined by the stress parameter  (the basic 
idea being that the 2-corner model will have the same high-frequency source spectral level as a 
single-corner source model with the specified  ).   The first model is already in SMSIM 
(source model 11); the source spectrum is the multiplication of two function of frequency.  The 
second model (source model 12) is new to these notes; it is the summation of two functions of 
frequency, and as such, it is a generalization of the source spectra used by Atkinson and Boore 
(1995) and Atkinson and Silva (2000).   I first discuss the multiplicative spectrum model, and 
this is followed by a discussion of the additive spectrum model. 

 

Generalized Multiplicative Source Spectrum 

 

Let the acceleration source spectrum be proportional to: 
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Where “ pf ” and “ pd ” stand for “power of frequency” and “power of denominator”. For high 

frequencies, this becomes 
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For an 2ω model, this constraint must be satisfied: 

 

 2pf pd pf pd
a a b b
     (3) 

If this constraint is satisfied, then the powers pf and pd can be related to an equivalent stress 

parameter and single corner frequency model, as follows.  For a single corner frequency model 

with corner frequency cf , the high-frequency spectral level goes as  
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Equating (2) and (4), with the constraint (3) gives 
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The procedure then  is to use the relation 

 

  1 36
04.906 10 Δcf β σ M   (6) 

to obtain cf  given Δσ  and 0M , where 0M  comes from moment magnitude M using the relation 

 

 0log 1.5 16.05M  M .  (7) 

Assuming that af  is specified by the user, in the following way: 

 

  1 2log Ma fa fa faf c c M   , (8) 

then equation (5) can be used to find bf : 
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I illustrate this model for two sets of the powers, both satisfying the constraint in equation (3).  In 

the first example, 2a bpf pf   and 0.5a bpd pd  .  Figure 1 shows the source spectra for this 

model, assuming M 6 and 100 bars  , for a series of af  . 

 

Figure 1.  

Note that with these choices of the powers, the two-corner sources merge into the single corner 

model when 0.36 Hza cf f  , as expected from the formulation above.  In contrast, Figure 2 
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shows the source spectra for 1.0a b a bpf pf pd pd    , and for this case, the 2-corner model 

never approaches the one-corner model. 

 

Figure 2. 
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Generalized Additive Source Spectrum 

 

Let the acceleration source spectrum be proportional to: 
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where “ pf ” and “ pd ” stand for “power of frequency” and “power of denominator”.  I proposed 

this source model to Gail Atkinson in a 1992 personal communication, and she used it to derive a 
source spectral model for ENA earthquakes (Atkinson, 1993), and this form of the source model 
was subsequently used in other papers by Gail and her colleagues. For high frequencies, this 
becomes 
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For an 2ω model, the following constraint must be satisfied: 

 

 2pf pd pf pd
a a b b
     (12) 

 

and the high-frequency level is: 

 

 2 2(1 )HF a bA ε f εf     (13) 

If the constraint in equation (12) is satisfied, then given  M  and  Maf ,  Mbf  can be 

determined by equating the high-frequency source spectral level to the level for a single corner 
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frequency model, as follows.   This then generalizes the additive two-corner model by letting the 
high-frequency level by determined by a stress parameter   (although there may be some 

constraints on  M  and   Maf  in order for the resulting source spectrum to make sense, such 

as bf  being a real number---I need to do some exploration of this).  

For a single corner frequency model with corner frequency cf , the high-frequency spectral level 

goes as  

 

 2
HF cA f  (14) 

Equating (13) and (14) gives 
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The procedure now is to use the relation 

 

  1 36
04.906 10 Δcf β σ M   (equation 6, repeated) 

to obtain cf  given Δσ  and 0M . 

Assuming that af  and   are specified by the user, such as in the following ways 

 

  1 2log a fa fa faf c c  M M  (16) 

and  

 

  1 2log ε ε εε c c  M M   (17) 
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then equation (15) can be used to find bf . 

 

Note that for the af  and 1   for a given M that there will be a value of  below which  bf  is 

not defined.  This occurs when the numerator under the radical in equation (15) equals 0.0. From 
equations (6) and (15), the lower limit for   is 
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where 

 

 64.906 10     (19) 

  

I have revised the SMSIM programs to include source model 12 (source model 11 was already in 
the programs).  This required a change to the params files, because the coefficients of equation 
(17) must be included in the params file. 

 

I tested the revision by using Atkinson and Silva’s (2000) equations for af  and   .    Figure 3 

shows the source spectra for the additive model for several values of M and  , compared to 
the single-corner source spectra (to check that the 2-corner spectra have the same high-frequency 

levels as the single-corner spectra).  I used 2.0a bpf pf   and 1.0a bpd pd  for the example 

in this and subsequent figures. 
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Figure 3. Source spectra 

Figure 4 shows the source spectra for a suite of   values differing by a factor of 2, and ranging 

from 0.01 to 0.64, for a specified value of af . 
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Figure 4. 

 

I simulated the motions at 10 km for a M 6 earthquake, with an effective single-corner stress 
parameter of 400 bars.  Figure 5 shows the Fourier spectrum for the 1- and 2-corner models for 
this case, computed from the basic equations for the spectra (what is called “model” in the 
figure), from an average of 100 time-domain simulations, and the spectrum from the last of those 
simulations.  The steep decay of the Fourier spectrum at low frequency is due to the inclusion of  

a low-cut filter with a corner frequency of 0.04 Hz, decaying as 8f  at low frequency.  
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Figure 5. Fourier acceleration spectra at R=10 km, M 6, 0.04 s  , and generic western rock 

crustal amplifications and Q. 

 

The response spectra are shown in Figure 6, computed for the 1- and 2-corner source models, 
using both random-vibration and time-domain (with 100 simulations) computations. 
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Figure 6. Response spectra for cases discussed in Figure 5 (the jitter in the curves for low 
frequencies is due to the frequency in the output files not having enough resolution). 

 

Note that the TD and RV simulations are in close agreement, except for frequencies between 
about 0.04 and 0.10 Hz.  I’m not sure of the reason for this disagreement, but it might have to do 
with the oscillator adjustments being used in the RV simulations (I am using those of Boore and 
Thompson, 2012).  As usual, it is always a good idea to check RV results with TD computations. 

 

The difference in amplitudes of the 1- and 2-corner (source 1 and source 12) PSA for frequencies 
on either side of the region of the source 12 sag (about 0.04 to 3 Hz, as shown in Figure 3) is 
primarily a result of how the source durations are computed.   For source 1 the source duration 

equals 1 cf , while for the 2-corner source model (source 12), the source duration is given by 
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0.5 0.5a bf f .  The result is that the source duration equals 1.77 and 4.24 for sources 1 and 12, 

respectively, and this will result in a difference in the rms acceleration of   4.24 1.77 1.5 , 

with the source 12 rms acceleration being smaller than the source 1 rms acceleration.   The PSA 
in Figure 6 at high frequency, which are equal to peak acceleration, differ by a factor of 1.5, as 
expected from the ratio of durations. 

 

As an aside, the equation above for the two-corner source duration differs from that used in 

Atkinson and Boore (1995) and Atkinson and Silva (2000): 0.5 0.0a bf f .  The problem with 

this source duration is that it leads to a discontinuity at the magnitude for which the two corner 
frequencies become equal.  I prefer using equal weights of 0.5 for both inverse corner 

frequencies, as this avoids the discontinuity.  In addition, as magnitude increases bf  generally 

increases much more rapidly than af , and as a result the duration is primarily controlled by the 

term 0.5 af , which is the equation used by Atkinson and Boore (1995) and Atkinson and Silva 

(2000). 
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Discussion 

 

The two generalized 2-corner source models are able to approximate a wide range of spectral 
shapes, as indicated in Figures 1, 2, and 4.    This flexibility comes at the expense of a number of 
coefficients that must be specified for any application.   I have not worked with the models (and 
data to which the models can be applied) enough to make strong recommendations for these 
coefficients, but at this time, I suggest the following: for source 11 (the multiplicative model),  

2.0a bpf pf   and 0.5a bpd pd  , with af  to be determined by fitting data (or GMPEs, or 

finite-fault simulations); for source 12 (the additive model),  2.0a bpf pf   and 

1.0a bpd pd  , af  from Atkinson and Boore (1995) or Atkinson and Silva (2000), and   to be 

determined by fitting data (or GMPEs, or finite-fault simulations). 
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