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A TWO-DIMENSIONAL MOVING DISLOCATION M O D E L  FOR A 

S T R I K E - S L I P  F A U LT 

BY DAVID M. BOORE*, KEIITI AKI AND TERnY TODD 

ABSTRACT 

For a propagating, vertical, strike-slip fault whose breakage extends to the 
Earth's surface, previous studies by Aki (1968) and Haskell (1969) have sug- 
gested that the near-field motions may be similar to those from uniformly-gliding- 
edge dislocations. The theory of these dislocations in uniform motion leads to a 
simple, convenient relation between the perpendicular and parallel components 
of motion at the fault's surface. A number of examples are considered in order to 
illustrate this relation between the horizontal components. In general, step-function- 
like parallel motions result in pulse-like perpendicular displacements. For a given 
parallel displacement, the amplitude of the pulse depends in a concise manner on 
ratios of the rupture to shear-wave velocity, and on shear- to compresslonal-wave 
velocity. Increasing either of these ratios leads to an increased pulse-amplitude. The 
dislocation model is applied to the near-field observations of the Parkfield earth- 
quake. The resulting estimate of the total fault offset is within the range of those 
based on the more detailed models of Aki (1968) and Haskell (1969). 

INTRODUCTION 

The effort now being made to instrument active faults will provide seismologists 
with excellent near-field seismic data. In order to interpret this data, attention must 
be given to the calculation of the near-field motion for various fault models. This, in 
general, is a very complex problem. Aki (1968) and Haskell (1969) have studied the 
displacements near a unilaterally-propagating, vertical strike-slip fault in an homo- 
geneous medium, taking the free surface into account in an approximate way. Even in 
this simplified fault model a lengthy numerical integration of the Green's function over 
the fault surface was necessary. The above authors noted, however, that for a site near 
the fault the seismic motion was predominantly governed by the relative motion of 
the two sides of the fault near the site, not by the total fault length and width. This 
implies that the much simpler two-dimensional solution for the elastic field of a uni- 
formly-moving dislocation might be of some use, both in interpreting measurements 
and in predicting the effects of variations in Poisson's ratio and rupture velocity. This 
idea will be explored in this paper. 

MODEL OF A PROPAGATING STRIKE-SLIP FAULT 

In the studies of I-Iaskell and Aki, the fault was assumed to be in an infinite medium. 
The fault was specified by the time-spatial variation of the relative motion across the 
fault surfaces and was confined to a rectangular region. With reference to Figure 1, the 
fault was assumed to start  at the left side and propagate uniformly to the right, stop- 
ping at the right-hand edge. The strike-slip nature of the fault was specified by allowing 
a discontinuity in only the u-displacement. The effect of the free surface was approxi- 
mated by mirroring the fault about the x-y plane. Aki showed that  if the condition 

* Now at National Center for Earthquake Research, U. S. Geological Survey, Menlo Park, 
California 94025. 
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H / ' X / - ~  ~ >> %/~/2 was met, where X is the eompressional wavelength and r is the distance 
to the fault, the width H of the fault was not important to the total motion. Further- 
more, he found that for a station some distance from either end, the starting and stop- 
ping effects (Savage, 1965) did not contribute to the motion; in essence, these are far- 
field terms and are small compared to the near-field terms governed by the dislocation 
motion near the fault. Thus we can approximate, for recording sites near a fault and 

"free surface'\ 

, z(w) 

4 L 

Fin. 1. The fault model used by Aki (1968) and ttaskell (1969). The relative displacement 
across both sides of the fault is a function of time and position. The z-direction is considered ver- 
tical and u, v, w are components of displacement. 

-(I:) 
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FIG. 2. A discrete gliding-edge dislocation representation, as seen in the stationary frame 
at some instant of time, of the fault model shown in Figure 1. Most of the dislocation models in 
this paper are not discrete, but have a displacement discontinuity which is a function of position 
along the moving dislocation. 

removed from its ends, a horizontally-propagating, vertical strike-slip fault by a gliding- 
edge dislocation moving at uniform velocity, with the dislocation line parallel to the 
z-axis and the Burger's vector (Weertman and Weertman, 1964) in the x-direction 
(Figure 2). For the purposes of this paper we will assume that  the dislocation across the 
fault surface is a specified function of time. We are not attempting to solve the more 
interesting and difficult problem of the dynamics of stress relaxation, which must de- 
pend in a complicated way on pre-existing stresses and elastic as well as nonelastic prop- 
erties of the material. 

The mathematical description of our problem is straightforward. Consider two half- 
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spaces of linear, isotropie, homogeneous material joined by a plane (y = 0) along which 
the fault propagates. We assume here that  all nonelastic processes take place within a 
narrow zone between the two fault surfaces (see Haskell, 1964, for a discussion of this 
idealization). With the assumption that  the z-component of displacement is zero 
(w --= 0), the following equations describe the motion 

V24) _ 1 024) 
a s Ot ~ 

v~¢, _ 1 o~4, ( 1 )  
f12 Ot 2 

where 

04) 0~ 0q) 0~ v = + - -  and a, fl 
u = Ox O y '  Oy Ox 

are the eompressional and shear velocities. Following Fung (1965), we change coordi- 
nates into a moving frame by the transformation 

! 

x = z - -  V t  

! 

Y = y  

t' = t ( 2 )  

where V is the rupture (propagation) velocity of the fault. 
With the further assumption that  in the moving frame there are no transient motions 

(i.e., the dislocation has been moving at constant velocity V since t = - ~ ), we can 
replace time derivatives by 

o - v o ( 3 )  
Ot Ox ~ 

Doing this and dropping primes, with the understanding that  we now consider quanti- 
ties in the moving coordinate system, gives 

2 02~ 02~ 
~ bjz2 + Ty~ = 0  

2 024> 02~ 
W ~ + - -  = 0 (4) 

Oy ~ 

where 

2 ~/l = 1 - -  M 1 2 , ~ 2  = 1 - -  M22 

the Mach numbers, are defined by 

M1 = V / ~  

and M1, M2, 

M~ = V/,~. 
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We consider here subsonic motion only, that  is, M1 < 1. Then 7: ,  7~ are real and equa- 
tion (4) is elliptic. 

Along the boundary between the half-species, we specify a diseontimfity in the paral- 
lel component of motion 

~ u ( x ,  0 )  = u ( x ,  + 0 )  - u ( x ,  - 0 )  -= u + - u - .  ( 5 )  

With the further assumption u + = - u - ,  each half-space can be treated separately. 
Another condition is that  the perpendicular component of stress, z~y, vanish across 
the fault surface. The need for this condition can be argued from symmetry and the 
need for no unbalanced forces to remain after integration of the forces on a loop around 
the dislocation. As a check on the consistency of the solution, the perpendicular dis- 
placement v and the shear stress ¢~y should be continuous across the fault plane when 
we join the solutions in each half-space. 

SOLUTION 

Several equivalent forms of the solution are useful. The standard separation-of- 
variables, Fourier transform approach gives 

u(x, y) = sgn(y) {e -l~l'~lyl -- x~e-I~l~tlYl}f(k)e i~ dk 
oo 

(6a) 

where x e = 

- } f~ e -l~lTtlyl ei~ ,r/2) v(x, y) = ~ (  72e-lkl~l~l -- 7:X~ • ,g, k f ( k )e~  dl~ (6b) 

1 - -~-M: ~ and f (k) is related to the Fourier transform U + (k) of u + (x) by 

U+(k) (6c) 
f ( k )  - -  2~r(1 - x2) " 

Note that,  if we are interested in the displacements along the fault, then the perpen- 
dicular component has an antisymmctric relation to the parallel component, and 
furthermore, the influence of the velocities on the perpendicular motion for any given 
form of the dislocation is given entirely by the factor 

2 
AMP - X - "h'Y2 (7) 

~:(: - f )  

We will discuss the behavior of this function later. 
We have already noted the elliptic character of the equations of motion. Because of 

this and the two-dimensionality, we should expect complex variable analysis to be in- 
t imately related to the solutions. Eshelby (1949) showed, in fact, that,  if we break the 
motion into distortional and dilatational parts u~, v: and u2, v2 [as is implied in equa- 
tions (1)], the following relations exist 

u: = I m  P (x + iTxy ), 7:v: = Re P (x -5 i'hy ) 

72u2 = Im Q (x + i72y), v2 = Re Q (x -k i72y) (8) 
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where P and Q are analytic functions in the half-plane of interest. These relations are 
convenient if we have one component of displacement [typically u (x, y)] and need the 
other. The forms above, however, do not guarantee that the interface conditions are 
met. These conditions imply relations between P and Q. Restricting our attention to the 
upper half-space y > 0 and with P(x ,  y)  = PR(x, y) q- iPs(x, y) [and similarly for 
Q(z, y)], 

Pz(x, O) ÷ 1 Q s ( x ,  O) = u(x,  +O) ~ u +. 
"72 

(9) 

In addition, the stress condition z~y = 0 becomes 

2 [ OP~ OQR "~ { OPs 10Qz; = O. 
'~ ~o('7~y--~ + "72 o('72y)).=o + ( 2  _ 2~2) ~ + "7-; ~ ) . = o  (10a) 

Using the Cauehy-Riemann equations, relating the real and imaginary parts of an 
analytic function, we find 

P,  + .),--2 Qr = 0 (lOb) 

or, to within an arbitrary constant that represents a rigid body displacement, 

2 

Ps(x,  O) -t- x Qr(x, 0) = 0. (I0c) 
"Y2 

Solving (9) and (10c) gives 

Qs(x, o) - "72 u+(x)  (11) 
(1  - x ~) 

and 

2 

P±(x, O) - - X  u+(x). (12) 
(1  - x 2) 

Knowing the imaginary parts, we can derive the real parts by using a theorem given 
in Titchmarsh (1948) which states that the real part and the negative of the imaginary 
part of a suitably integrable, analytic function which is regular in the upper half-plane 
are Hilbert transform pairs along the real axis. Thus, e.g., 

1 Pz(t)  
PR(x) = - f ~  dt 

7r-~ ~ -- X 

(13) 

where f stands for the Cauehy principal value of the integral. (Relations of this type, 
often referred to as Kramers-Kr6nig equations, have been used in another context in 
seismology in the studies by Futterman (1962) and Lamb (1962) of the dispersion ac- 
eompanying absorption of waves. ) We have glossed over the condition on integrability. 
For most of the functions considered here, this condition is met. When it is not (as in a 



discrete dislocation) we do not use this approach. With the values of P and Q along the 
(real) x-axis we could extend the results for y >- 0 by analytic continuation. Our main 
interest, however, is in the displacements very close to the fault, for it is here that our 
neglect of the fault width is most valid. In that ease the equations above give 

(X 2 - -  "Y1~'2) 1 ~ u + 
v(x, +O) = -- ~ ( 1 ( 1 - - - ~  ~r-~, t ~ xdt" (14) 

d_ 

We note that the factor containing the velocities is the same as in (7). We could, in 
fact, have derived (14) directly from (6b) by using the convolution theorem. The use- 
fulness of (14) lies in the existence of tables of Hilbert transforms for a wide variety of 
functions (e.g., Erd61yi, 1954). 

As seen in (14), the perpendicular displacement along the fault depends both on the 

v (×,o) / 
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FIG. 3. Components  of mot ion  along the  faul t  for discrete gliding-edge dislocation. The  per- 
pendicular  displacement  is schematic .  In  this  and all other  figures, the  sense of mot ion  is appro-  
pr ia te  for a r ight- la tera l  fault .  

velocity ratios and the dislocation across the fault surface. The influence of these two 
factors will be studied separately, starting with the form of the dislocation. In all of 
the examples to follow, the sign of the dislocation will be chosen so as to model a right- 
lateral fault, and the maximum total amplitude of the dislocation will be d. 

DISCRETE DISLOCATION 

The simplest and most obvious dislocation function is a simple step discontinuity 
in the parallel component of displacement. This corresponds to the classical discrete- 
edge dislocation. Following Eshelby (1949), we can easily show from equation (6a) 
that for a fault motion of total offset d 

u ( x ,  y )  - 27r(1 - x ~) tan-1 "/2ix - x2 tan-~ " (15a) 

(Note that since the total dislocation, d, is accounted for by equal but opposite motion 
of each side of the fault surface, the maximum offset on a given side of the fault is 
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d/2. ) Furthermore, using the relation 

log (xWiy) = log[x 2 +  y2]~/2 ~ _ i t a n  -1 (y/x) 

and equations (8) we can write down the perpendicular displacement 

- d  { ) 2  2 211/2) v(x, y) = 2~r(1 -- X 2) ~ log [x 2 q- 3,12y2] l/2 -- 3'2 log [x 2 Jr 3,2 y 1 } .  (15b) 

The component s of motion along the fault surface are sketched in Fignre 3. We note 
that  the perpendicular component exhibits an infinite peak in displacement at the 
origin and that  it tends to - ~ for I x l --~ m" As we will illustrate later, the peak at the 
origin is due to the discontinuity in the parallel component, whereas the behavior of 

n 

u(x,+o) " ~  \ 
.5d 

Fro. 4. Components of motion along the fault for a smoothed-out-edge dislocation, as given by 
equations (17). For purposes of illustration, a constant displacement has been added such that 
v(1, o) = O. 

the displacement far from the origin is governed by the finite offset in the parallel 
component. As it is, the perpendicular displacement is obviously not useful quanti- 
tatively, although it does predict the sense-of-direction of the motion. We thus study a 
series of smoothed-out dislocations which might be more useful in quantitative com- 
parisons with observations. 

SMEARED-OuT DISLOCATIONS 

In order to smooth the discrete jump at the origin, we consider first a dislocation 
given by 

d tan-1 W (16) u+(x)  = ~ x 

where W is a parameter controlling the distance over which the final offset is reached. 
As W -* 0, u + --* a step function equivalent to that  discussed in the section above. We 
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can use the previous results and write down the solution here almost by inspection. I t  is 

d s g n y  { _ [Yl q- W ~1 [Ylq- W} 
u(x,  y) - 27r(1 - x2 ) tan ~3'2 x x2 tan-1 x (17a) 

v ( x , y )  -d {x 2 W)2]112 
- 2 (1 - x log  + l y l  + 

-- 72 log [x 2 + @/2 l Y] + W)2]II~} • 

(17b) 

The solution along the fault surface is sketched in Figure 4. We have eliminated the 
infinite pulse at the origin, but  the logarithmic divergence for I x l --~ m still exists. 

This divergence is a common feature of two-dimensional, steady-state solutions 

4 
16 

~6 

i q I I I I 

2 4 6 

-x/W 
FIG. 5. Components of motion, along the fault surface, as given by equations (19). The parallel 

component is antisymmetrie and the perpendicular component is symmetric about x = 0. The 
units of displacement in this and the following figures is d, the total dislocation. 

(Fung, 1965, p. 264) and is obviously unphysical. I t  seems reasonable that  it could be 
eliminated by not requiring a constant offset at 1 x I = ~ ,  allowing instead the disloca- 
tion to approach zero far from the tip of the fault. This is somewhat justified by the 
physical model we are attempting to model by two-dimensional dislocations; the dis- 
location along the real fault approaches zero for x large. A convenient function for the 
dislocation is 

d [ (x/W) 1 
u+(z) -- - ~  L(x/~y) ~ ~ 1 

(18) 

as it is easy to find v (x, y), and it also approximates the form of the dislocation found by 
Aki (1968). I t  does have the rather unphysieal feature that  the surface area over which 
the faulting has taken place remains constant with time, rather than starting from a 
point and sweeping out an ever-increasing area. Since the function in (18) is in the 
moving frame, this means the dislocation established across the fault at any point must 
relax in time such that  the dislocation surface remains constant. The decay with dis- 
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tance of the dislocation and the constancy of the area of dislocation must be retained 
if logarithmic divergences for large x are to be avoided and if the assumption of a steady- 
state solution in the moving frame is to be used. I t  must be remembered, however, that  
our basic approximation of a three:dimensional faulting process by a two-dimensional 
one precludes an accurate description of the fault, and, in this light, the undesirable 
feature above is not crucial. What  we desire is to predict certain features of the displace- 
ment which, within the limited bandwidth of the observations, are useful approxima- 
tions of more realistic (and more complicated) fault models. 
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FIG. 6. T h e  behav io r  of the mot ions  given by  (19) as a func t ion  of d is tance f rom the  f au l t ;  
in this  example  V = 2.2, ~ = 3.5, and a = 6.0 km/sec .  

The solution in this case is 

- d W  f x _ X2 x ) u ( x , y ) - 2 ( 1 _ x 2  ) X:+(~,2iyi_i_W) 2 x 2 + ( , y l [ y i + W )  2 sgn(y) (19a) 

gw fx 2 ( ,lyl+w) } 
v(x, y) - 2(~ ---x2 ) \ ~  [x~_i_ (~,llyi _t_ W)2] - "Y2[x2 _}_ (~21Yl + W )  2] " (19b) 

These displacements are plotted in Figure 5 for y = 0. Interesting features of the solu- 
tion for other vMues of y are that  the rise-distance in the parallel displacement increases 
with y, and, along x = 0, the peak in the perpendicular displacement occurs at 

y/W - x/'y2 - 1 (20) 
3'1 - -  X 

and not at the fault surface. These features are shown in Figure 6 for a particular 
choice of the velocities: 
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Returning to Figure 5, we see that  the divergence at infinity has been removed, as has 
the infinite pulse at the origin. The function considered does not, however, seem to offer 
enough flexibility of form for application to observations. In particular, a discrete dis- 
location cannot be recovered from the function; rather, in the limit W --~ 0 the disloca- 
tion becomes a doublet, similar to the derivative of a ~ function. Thus, we consider still 
another form for the dislocation. 

The form we choose is 

u+(x) = - A ( a ,  b)e-~b~{1 - e -t} sgn x (21) 

where ~ = Ix I/a and A (a, b) is chosen such that  the peak to peak amplitude is d/2. 
The maximum value occurs at 

log~ ab + 17 (22) 
~ =  L a b  _] 

and gives 

d (1--[- ab ) (1-~bab )~b A(a, b) = ~ - -  • (23) 

Restricting our attention to the fault surface, y = 0, we find that  the perpendicular 
displacement from equation (14) and the table of Hilbert transforms given in Erd61yi 
(1954) is 

v(x, O) A(a, b) (x ~ - %%) 
- ~ ~(~ _2 ~ {e-(~b+~)~E~[(ab q- 1)}] 

(ab-[-1) ~ r + e ~ t - ( a b  + 1)~] - e-ab~Ei[ab~] 

- e~b~E~[--ab(]} (24) 

where E i ,  /~  are exponential integrals as defined in Erd6lyi (1954). In the limit ( -*  0 
the displacement becomes 

v(0, 0) - 2A(a, b) (x ~ - 3'1%)logab + 1 (25) 
~r 3'1(1 -- X 2) ab 

and for large x, v (x, 0) ~ 0. Expansions given in Gautschi and Cahill (1965), were used 
to derive these limits. Plots of u (x, 0) and v (x, 0 ) /AMP,  calculated from equations 
(21) and (24) with the help of the tables in Gautschi and Cahill, are given in Figure 7 
for a range of ab values. The general effect of decreasing ab is to produce a larger per- 
pendicular displacement. In the limit ab ~ 0, we either have a parallel component (A) 
with a discrete jump at x = 0 and no residual at infinity, or (B) a finite residual at 
infinity but  a smooth dependence near the origin, depending on whether a or b ap- 
proaches zero (e.g., the effect of a --~ 0 is shown in Figure 8). In either ease, our pre- 
vious examples lead us to expect that  the total perpendicular displacement is infinite; 
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in case (A), above, this infinity should occur closer to the origin, as a spike, than in 
ease (B) where the perpendicular displacement will diverge logarithmically as Ix [!-+ 
~.  If we keep in mind the ambiguity of the displacements to within rigid body[motions, 
we can see that the results in Figure 7 satisfy these expectations. 
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FIG. 7. The components of motion along the fault  surface as given by equations (21) and (24). 

EFFECT OF RUPTURE VELOCITY AND POlSSON'S RATIO 

As pointed out earlier, the effect of the velocities on the amplitude of the perpendicu- 
lar component of displacement along the fault is contained in equation (7). This de- 
pendence is illustrated in Figure 9 for a wide range of Mach numbers (V/~) and shear- 
compressional velocity ratios (or equivalently, Poisson's ratio). The effect of an 
increase in either quantity is to increase the amplitude of the perpendicular component. 

4 
Weertman (1969) has pointed out that at the Rayleigh velocity, given by 71~/2 = x ,  
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the shear stress across the dislocation surface vanishes, and beyond this velocity the 
shear stress changes sign. This suggests that  the Rayleigh velocity may play an im- 
portant  role in the dynamics of moving dislocations. This importance is not, however, 
indicated in the amplitude function shown in Figure 9. There the obvious character- 
istic rupture velocity is the shear velocity, at which point the perpendicular displace- 
ment diverges to infinity. 

I t  is important  to realize that  the dependence of the amplitude of the perpendicular 
displacement on the velocities is completely expressed by equation (7) only if the paral- 
lel component of motion does not change with rupture velocity. Since most forms of the 
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FIG. 8. Upper, the influence of the rise-distance, x~, on the peak amplitude of the perpendicular 

component. Lower, a few examples of the corresponding parallel components. The parameter b 
was fixed at b = 0.046 (this gives x~ = 2 when ab = 0.01). 

parallel component can be characterized by a rise-distance x~ related to rise-time t, by 

x~ = v t ~  , (26) 

this implies that  as the rupture velocity increases t~ must decrease in order to keep x~ 
constant. If, on the other hand, we wish to determine the influence of rupture velocity 
on a fault model with constant rise-time, we must also take into account the effect of 
the changing rise-distance in the moving frame. This dependence is shown in Figure 8 
for a particular form of the dislocation across the fault surface. 

For points away from the fault, it is no longer possible to separate the spatial and 
material property dependence. In  general, the effects of the rupture velocity and 
Poisson's ratio are to produce relativistic transformations of the y-coordinate, and to 
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determine the relative proportions of the shear and compressional solutions in the total 
motion. 

As a final point, if two-component near-field measurements are available, the parallel 
component could be used to obtain directly the total dislocation across the fault surface 
and the perpendicular component of motion could be used, with the aid of the results 
in this section, to estimate the rupture velocity. 

APPLICATION TO t~ARKFIELD EARTHQUAKE 

The now famous Parkfield earthquake of June 28 1966 presents one of the few 
possibilities, up to the present time, of testing our model against actual observations. 

I - I  I I 
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a_ I B/a  :.4 

l < .10-  
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. 0 1 1  I' [ I 
0 .2 .4 .6 .8 1.0 

Mi 
FIG. 9. The behavior of the amplitude factor as defined by equation (7). M1 is the shear-wave 

Maeh number V/ft. 

This earthquake was recorded by a three-component strong-motion seismograph and 
also by a seismoscope, both located only a short distance from the fault (Housner and 
Trifunac, 1967). The parallel component of the aecelerometer was inoperative at the 
time of the earthquake, and, thus, most of the discussion below will deal with the per- 
pendieular component. Trifunac and Hudson (1970), however, were able to combine 
the existing accelerometer traces with the seismoscope record to compute the first few 
seconds of the parallel acceleration trace. At the end of this section, a rough comparison 
of the displacement implied by this motion will be made with the dislocation model. 

Aki (1968) used the perpendicular displacement, with a peak amplitude of about 
30 cm, to estimate the total dislocation produced by the fault. He found this to be ap- 
proximately 60 cm, whereas the slip across the fault surface observed at the surface of 
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the ground some time after the event was an order of magnitude smaller. Results in a 
general s tudy of the elastic fields near a propagating fault by  Haskell (1969) imply a 
dislocation of 95 to 140 cm for this earthquake. In  this section we will compare results 
obtained from the two-dimensional dislocation theory with these more exact estimates. 
In  so doing, we will follow Aki and use the following parameters:  a = 6.0 km/sec,  
fl = 3.5 km/sec ,  V = 2.2 kin/see. 
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Fro. 10. Solid lines, components of motio~ from Figure 7 with the parameter a chosen such 
that the peak parallel motion occurs at the normalized distance 2 = 1. The velocity ratios shown 
in Table 1 under Aki have been used in the computation of the perpendicular displacement. Dashed 
lines ®, values of the motion as computed by Aki (1968) taken from his Figure 12 and plotted 
against the normalized 2. Dashed line ®, the motion in ® normalized such that the peak parallel 
displacement is d/4, as required by the boundary condition. 

As we have previously noted, the motion shown in Figures 5 and 7 is qualitatively 
similar to tha t  derived by  Aki (1968, Figure 12 in his paper) .  In  order to effect a quanti- 
ta t ive  comparison we replot the data in Figure 7 by  choosing a value of "a"  such that  
the peak in the parallel component  occurs at. x = 1. The resulting motions are shown in 
Figure 10. The ease ab = 0.1 is very similar to the motion in Figure 5, which was de- 
rived from equation (19). Also shown are Aki's results, again normalized so tha t  the 
peak in u occurs at  x = 1. 
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In plotting Aki's results, an a t tempt  has been made to compensate for the fact tha t  
his motions were not calculated on the fault. From his results, calculated at y = - 0 . 0 8  
km, we find a zero-to-peak distance in the parallel component of about 0.66 kin. Re- 
membering the antisymmetry of u, we note that  the zero-to-peak distance is one-half 
of the rise-distance. Because of the similarity between his results and those derived 
from equations (19), we can use the data in Figure 6 to show that  the zero-to-peak 
distance at the fault surface would be about 0.53 km, and u ( - -0 .08) /u  (0.0) = 0.82, 
v ( - 0 . 0 8 ) / v  (0.0) = 1.06. These factors have been applied to his results. Also shown in 
Figure 10 is the perpendicular component of motion derived by Aki if the parallel com- 
ponent had attained a maximum zero-to-peak amplitude of d/4, as required by the 
boundary condition along the fault. 

We see from Figure 10 that  although the parallel components derived by Aki and 
the two-dimensional theory agree quite well, the perpendicular components do not. If, 
based on the agreement in the parallel component between his results and those for 
ab = 0.1, we estimate d from the two-dimensional results, we get d --~ 100 cm. The 
discrepancy between the results may be partly due to the arbitrary extrapolation of the 

TABLE 1 

FAULT PARAMETERS 

Aki Haskell 

~/a 0.58 0.58 
V/f~ 0.63 0.77 
Xr* 1.0 km 2.0 km 
Lt 7.0 km 20.0 km 
Ht 6.0 km 5.0 km 

* Approximate distance in moving frame required 
for total parallel dislocation to be reached. 

See Figure 1. L in Aki's ease could be increased 
without altering the solution in any significant way. 

spectra Aki made for very low frequencies. The peak of the perpendicular displacement 
may not depend strongly on the extrapolation of its speet.ra, and, thus, we could say 
that,  as far as the peak amplitude is concerned, the perpendicular displacement actually 
corresponds to a different parallel component of motion from that  shown in his Figure 
12; the function u + to which v does correspond probably has a tail which decreases less 
rapidly with distance than is shown. Thus, perhaps we should use the results for 
ab = 0.01 rather than 0.1, in which ease d ~-~ 70 em. In any ease, some discrepancy 
should be expected between the three-dimensional and two-dimensional calculations. 

We now turn to a comparison with Haskell's results (1969). As opposed to Aid, 
Haskell derived expressions for the motion by integrating a time-domain Green's 
function over the fault surface, and, thus, did not have to extrapolate spectral values. 
He did not, however, base his calculations on a model of the Parkfield earthquake. 
Even so, one of his models was close enough to that at Parkfield to permit comparison 
of his theoretical values with the observations. Table 1 contains a comparison between 
this model and Ald's. If we take Haskell's results for the peak motion at various dis- 
tanees from the fault, as shown in Figures 8.1 and 8.4 in his paper, we can extrapolate 
the peak motions to the fault (Figure 11 ). The extrapolation of the parallel component 
gives a value of d/2 units for the offset of a given side of the fault, and, for the perpen- 
dicular component, we get 0.2d to 0.3d, depending on the manner of extrapolation. The 
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leveling off of the perpendicular component shown in Figure 6 would argue for the lower 
value. The resulting derived total-fault offset, based on an observed perpendicular 
motion of 30 cm, at 0.08 km from the fault, is then 95 to 140 cm. Actually, as seen in 
Table 1, Haskell used a higher Mach number than we did in the computations. The 
results in Figure 9 imply that,  if he had used a smaller number, the derived fault offset 
would have been even larger. On the other hand, Haskell's rise-distance is larger than 
Aki's. This factor alone would lead to a discrepancy between the derived fault offsets 
of Aki and Haskell which is similar in sense to that  found. The results in Figure 8, 
however, imply that  this factor would, at the most, cancel the effect of the different 
5~[ach numbers. Furthermore,  if we use Aki's results with the parallel component nor- 
malized to d/4,  or if Aki had used a constant amount of dislocation over the fault 
surface rather than a dislocation which decreased with depth, we would get a smaller 
offset than the derived one of 60 cm. I t  thus seems that  a discrepancy exists between ,5[ 
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FIG. 11. The  solid dots are peak values of the  mot ion computed by  Haskell  (1969). The  y-co- 
ordinate  has been normalized by  V. t~ where t~ is the  r ise-t ime of a ramp funct ion.  D a t a  t aken  
f rom the  middle of the  faul t  surface in Haskel l ' s  Figures  8.1 and 8.4. The  dashed lines are pos- 
sible extrapolat ions.  

Aki's and Haskell's results. The origin of this discrepancy is not clear, but  it is en- 
couraging that  the two-dimensional dislocation results fall between their estimates. At 
any rate, all three of the estimates clearly indicate that  the actual fault offset was much 
larger than observed at the surface. 

A rough comparison can also be made with the partiM parallel-component accelera- 
tion trace derived by Trifunac and Hudson (1970, Figure 6). Disregarding the high- 
frequency oscillations, which must be due to inhomogeneities of fault motion or ma- 
terial properties, we can fit the function 

- A t  atsgn(t) sg~ ( t)  

to the motion, where A ~ 350 cm/sec 2, a ~ 3.3 sec -1, and the t ime origin is placed 
at the obvious jump in acceleration. Upon integrating twice, we find that  the dis- 
placement has a finite offset of 2 A / a  2 ~ 70 cm, and it is in the proper direction for 
right lateral motion. Considering that  the total offset should be one-hMf of the total 
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fault dislocation, we come out with d ~ 140 cm. If we define the rise-time as 2/a, we 
find it to be 0.6 sees, a value consistent with other reported values. We must not take 
these deductions very  seriously, since they are based on an incomplete time series, 
bu t  they do show that  the parallel component is consistent with the perpendicular 
component and with the two-dimensional dislocation model. 

DISCUSSION 

We have shown that the study of two-dimensional gliding-edge dislocations car~ 
provide some useful insights into the near-field motion of propagating faults. The use of 
such dislocations is strictly limited to idealizations of propagating, vertical strike-slip 
faults which extend to the Earth's surface. Within this context, the dislocation model 
provides results, for the near-field motions, comparable to those from the more de- 
tailed studies of Aki (1968) and Haskell (1969) but with greatly reduced effort and 
expense. 

The simplified fault model we have discussed may be sufficient for a uniform half- 
space, but is no substitute for the much more complicated and potentially very interest- 

ing model of fault propagation is a layered Earth. In particular, the influence on the 

near-field motions of a layer of low-velocity sediments may be extreme. The effects 

could range from a decoupling, as discussed by Aki (1968), to a large amplification of 
the motions. It is also conceivable that a fault propagating subsonically in the lower 
medium could give rise to supersonic bow waves in the low-velocity sediments. These 
shock-waves could be very destructive and deserve further study. 

Finally, we note that, within the framework presented in this paper, the motion 

near a propagating tensile crack can be modeled by a uniformly-moving climbing- 

edge dislocation. 
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