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ACCURACY OF FINITE-DIFFERENCE MODELING OF THE 

ACOUSTIC WAVE EQUATION 

R. M. ALFORD,’ K. R. KELLY,* AND D. M. BOORET 

Recent interest in finite-difference modeling of 
the wave equation has raised questions regarding 
the degree of match between finite-difference solu- 
tions and solutions obtained by the more classical 
analytical approaches. This problem is studied by 
means of a comparison of seismograms computed 
for receivers located in the vicinity of a WI-degree 
wedge embedded in an infinite two-dimensional 
acoustic medium. The calculations were carried 
out both by the finite-difference method and by a 
more conventional eigenfunction expansion tech- 
nique. The results indicate the solutions arc in 
good agreement provided that the grid interval 
for the finite-difference method is sufficiently 
small. If the grid is too coarse, the signals com- 
puted by the finite-difference method become 
strongly dispersed, and agreement between the 

INTRODUCTION 

Solutions to wave propagation problems by 
finite-difference methods have received consider- 
able attention in recent years (Alterman and 
Karal, 1968; Ottaviani, 1971; Boore, 1970). These 
methods are particularly attractive for struc- 
turally complex subsurface geometries because of 
the great difficulties encountered in obtaining 
analytical solutions. Geometries of particular in- 
terest in petroleum exploration are those contain- 
ing sharp corners which generate diffractions. The 
purpose of this paper is to examine the accuracy 
of finite-difference methods for treatment of 
geometries containing sharp corners. This is ac- 
complished by comparing the solution of the 
acoustic wave equation obtained by finite-differ- 

two methods rapidly deteriorates. This effect, 
known as “grid dispersion,” must be taken into 
account in order to avoid erroneous interpreta- 
tion of seismograms obtained by finite-difference 
techniques. 

Both seconti-order accuracy and fourth-order 
accuracy finite-difference algorithms are con- 
sidered. For the second-order scheme, a good rule 
of thumb is that the ratio of the upper half-power 
wavelength of the source to the grid interval 
should be of the order of ten or more. For the 
fourth-order scheme, it is found that the grid can 
be twice as coarse (five or more grid points per 
upper half-power wavelength) and good results 
are still obtained. Analytical predictions of the 
effect of grid dispersion are presented; these seem 
to be in agreement with the experimental results. 

ence methods to that obtained by classical analyti- 
cal methods for the simple case of an infinite two- 
dimensional 90.degree wedge (quarter space) in 
an otherwise infinite homogeneous medium. The 
source field was that due to a line source distribu- 
tion located parallel to the corner of the wedge 
(see Figure I). For analytical simplicity, the 
acoustic velocity of the wedge medium is taken 
to be zero. This is equivalent to having a per- 
fectlj “soft” wedge medium such as a vacuum. 

ANALYTICAL SOLUTION 

The governing equation describing the acoustic 
velocity potential u(p, 4, 1) in a homogeneous re- 
gion due to a line source distribution located at 
(p8, &) with respect to the origin of a cylindrical 
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FIG. 1. Cross-section illustrating geometry and cy- 
lindrical coordinates for the 90 degree wedge model. 

coordinate system is 

= - ~*------- , 
P 

where Co is the velocity of acoustic propagation 
in the medium, V2 is the Laplacian operator, f(t) 
is the time variation of the source distribution, 
and -Ar6(p-pp,) .S(+-&J/p is the normalized 
two-dimensional Dirac delta function at the 
source location (Morse and Feshbach, 1953, p. 
893). The Fourier transform with respect to time
of equation (1) yields the reduced wave equation: 

= _ 4 (p_ PMd - 48) (2) 
a ___--- F(w), 

P 

where 

U(p, 4, cd) = J +nu(p, 4, t)e-i”‘dt, 
--o 

s +s. 
F(w) = f(t)eeiutdf, 

--m 

and 

-1.0 J v, , , , 
-300 -150 0 150 300 

time it) IN MS 

FIG. 2. Normalized source distribution time
function. 

quirement of outward traveling waves at infinity 
may be obtained by classical. eigenfunction ex- 
pansion techniques (Oberhettinger, 1954). The 
solution is available (Bowman et al, 1969, p. 265) 
and is given by 

. sin M, sin X,4, P I ps, 
(3) 

where Xn=$n, Hfi is the second Hankel func- 
tion of order A,,, and Jhn is the Bessel function of 
the first kind of order A,. The solution for p>ps is 
obtained by interchanging the roles of p and ps in 
the right-hand side of (3). The corresponding time
domain solution to the problem is given by the 
inverse Fourier transform of (3); i.e., 

U(P, A0 = ; 
S 

+- 
U(p, 4, w)e+“wtdw. (4) 

--m 

The time variation of the source distribution, 
taken as the first derivative of a Gaussian func- 
tion, is 

f(t) = tecat2, (5) 
where (Y is a constant governing w the time in- 
terval from negative to positive peaks of the func- 
tion as shown in Figure 2. This choice was made as 
a good compromise between short time duration 
and a narrow spectrum. The Fourier transform of 
(5) is 

k = w/Co. 

The solution to equation (2) in the presence of the 
90-degree wedge subject to the boundary condi- 

112 
e--w=/4a 

, (6) 

tion of the vanishing of the acoustic velocity po- which, when substituted in (3), provides sufficient 
tential at the surface of the wedge, the require- damping for reasonably large fw to cause the 
ment of boundedness at the origin, and the re- spectrum of u(p, 4, t), i.e., U(p, 4, w), to be band- 
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limited for all practical purposes. This is desirable 
since the inverse Fourier transform generally can 
be performed only numerically. Thus, the analyti- 
cal solution to the 90-degree wedge problem is ob- 
tained by substituting (6) into (3) and performing 
the operation in (4) numerically. 

THE FINITE-DIFFERENCE FORMULATION 

The homogeneous form of (1) can be approxi- 
mated in rectangular coordinates by the explicit 
second-order difference scheme (Mitchell, 1969, 
p. 203): 

4% n, 1 + 1) 

= 2(1 - 2p2)u(m, n, I) + p’[u(m + 1, n, 1) 

+ u(m - 1, n, I) + u(m, fi + 1, I) (7) 

+ u(m, fl - 1, Z)] 

- u(m, n, z - 1) + 0(h2 + AP), 

where Ax=Az= h is the grid size in the z and z 
directions, respectively;At is the time step; m, n, 1 
are integers such that ~=mAz, z=nAz, t=lAt; 
p= C&/h; Andy O(hz) indicates the scheme ap- 
proximates the corresponding partial differential 
equation to order hZ. An alternate expression may 
be obtained by using the more accurate fourth- 
order representation for the Laplacian given by 
Abramowitz and Stegun (1964). The resulting 
difference scheme is 

u(m, fi, .l + 1) 

= (2 - 5pZ)U(Vz, n, Z) 

+ $ ( 16[u(m + 4 n, 1) + u(m, n + 

+ u(m - 1, n, 1) + u(m, n - 1, 01 

- [u<m + 2, n, Z) + z+z, n + 2, 0 

+ u(m - 2, n, 0 + u(m, n - 2, 01 f 
- u(m, n, Z - 1) + O(h4 i- At’). 

1, 0 
(8) 

A finite-difference scheme is said to be stable if the 
difference between the theoretical and numerical 
solutions of the difference equation remains 
bounded as 1 increases, At remaining fixed, for all 
m and ?z (Mitchell, 1969, p. 34). Equation (7) is 
known to be stable, provided that (Mitchell, 1969, 
p. 205) 

P I 1142. 

The same method may be used to show that (8) 
is stable if p 54%. 

To obtain the appropriate source field uS(p, C#J, t) 
for use in the finite-difference method, the solution 
to (1) in an infinite free space is required. This is 
obtained as the inverse Fourier transform of the 
solution to equation (2) in an infinite free space 
(Morse and Feshbach, 1953, p. 891), 

4, 4, 0 

1 
=- S +O” { --i7rHi2)(k 1 @ - es 0 

2x -_m 
(9) 

*G) I e+iUt&) 
9 

where F(w) is as defined by (6) and 1 p--pa/ is the 
distance from the source to the observation point. 
The inverse Fourier transform necessary to obtain 
U&J, 4, t) is performed numerically. The source 
field power spectrum and the source field time
response at a representative location are displayed 
in Figures 3a and 3b, respectively. 

Problems in the finite-difference formulation 
arising from the area near the source foca~tion are 
handled by deleting the source contribution to the 
total velocity potential from a small square en- 
closing the source location. This approach was 

0 5 10 15 al 25 30 35 40 

FREQUENCY IN HZ 

FIG. 3a. Normalized source field power spectrum 
at p = 2000ft. 

1.001 

-1.00 4 
0 200 400 6GO 

time (t) IN MS 

FIG. 3b. Normalized source field time response at 
p = 2000 ft. 
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used successfully by Alterman and Karal (1968). 
The overall size of the finite-difference model can 
be made sufficiently large to prevent distortion 
of the results by spurious reflections from the 
edges of the model. 

RESULTS 

Second-order scheme 

A comparison of the finite-difference results for 
the second-order scheme of (7) with the analytical 
results obtained from the eigenfunction expansion 
method is shown in Figure 4 for three different 
receiver locations. Of particular interest is the ob- 
servation that the diffraction (Figure 4c) is gen- 

1 

?I i\ 

erated to good accuracy by finite-difference 
methods. An important parameter affecting the 
accuracy of finite-difference methods is grid 
coarseness. A measure of grid coarseness is the 
number of grid points per wavelength of the 
source; we shall use Go the number of grid points/ 
half-power wavelength. The half-power wave- 
length is defined to be the wavelength correspond- 
ing to the frequency of the upper half-power point 
of the source field power spectrum (see Figure 3a). 
For the value of (Y used (lOOO), the half-power 
wavelength is approximately 800 ft. For AX = 72 
ft, chosen for Figure 4, C&--l 1. 

Figure 5 shows the comparison between the re- 

SOURCE 
2 

:oLJ \ 
3 FIRST~+----- Ax = 72’ 

V=8ooo’ Is 
LARRIVAL , REFLECTlOp p -0.7 

-1-i I I 1 m 
0 200 400 600 

(a) 

SOURCE 

-1 1 
0 ZOO 

400 CC) 
time (t) IN MS 

FIG. 4. Analytical solution (solid line) and fine grid (17, = II) finlite- 
difference solution~circles) for the second-order scheme. 
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FIG. 5. Analytical solution (solid line) and coarse grid (G,, = 5.5) finite- 
difference solution (circles) for the second-order scheme. 

suits of the second-order finite-difference scheme 
and those of the analytical method when the grid 
size is increased to Ax= 144 it, which gives 
Ga4.5. It is noted that for the lower value of Go 
in Figure 5, propagated pulses show the prop- 
erties characteristic of normal dispersion, i.e., 
they are delayed and broadened and develop an 
oscillatory tail. These effects become more pro- 
nounced as the distance the pulse has traveled 
through the grid increases. Boore (1972, p. 21-22) 
identifies grid dispersion as well as errors in 
derivative approximations and aliasing as poten- 
tial sources of trouble in finite-difference calcula- 
tions. Spatial and temporal frequency aliasing are 

negligible for the source function and the spatial 
and temporal sample intervals used in this paper. 
It would appear to be a very difficult, if not im- 
possible, task to separate errors in approximating 
the derivative from errorg.due to dispersion in a 
discrete grid as the two effects are intimately re- 
lated. In the following analysis, all errors are 
lumped into_ thr_c;ttegory of grid dispersion errors. 
This choice is felt to be preferable since the term 
dispersion brings to mind signals which are 
corrupted by broadening and the addition of os- 
cillatory tails; this is the form of the errors which 
appear in finite-difference solutions. 

The dispersive nature of the waveforms can be 
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examined by considering phase and group velocity 
as a function of frequency or, equivalently, as 
a function of G, the number of grid points,’ 
wavelength. The absence of dispersion would, of 
course, be characterized by phase velocities and 
group velocities that do not vary with frequency. 
Expressions for phase and group velocity based on 
plane wave propagation are developed in the ap- 
pendix for the second-order finite-difference 
scheme represented by (7). Results from these 
equations are shown in Figure 6 for different 
values of 8 the propagation angle with respect to 
the grid. Both the phase velocity Cp and the 
group velocity CC are normalized to the zero- 
frequency phase velocity Co. It may be seen that 
dispersion is greatest when the wave propagates 
parallel to the grid (0=0). For this case the dis- 
persion relation reduces to that for the corre- 
sponding one-dimensional, second-order, finite- 
difference scheme, i.e., 

PI<;. 6. Normalized phase and group velocity 
for different propagation angles with respect to 
the grid, for the second-order scheme (I> = .7). 
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FIG. 7. Normalized phase and group velocity 
for different stability ratios for the second-order 
scheme. 

CP G 
-- = - sin-’ 

CO pn 

CC cos T/G 
(10) 

-- =--- 
CO (1 - p2 sin2 r/G)“2 

Phase and group velocity curves for this case 
are shown in Figure 7 for various values of p. 
Figure 7 indicates that p should be made as large 
as possible to minimize dispersion. The maximum 
value is determined by the stability limit, 
p= l/d/2. Using values of p near the stability 
limit is also desirable from the viewpoint of mini- 
mizing computational time

Fourth-order scheme 

Figure 8 shows a comparison of finite-difference 
calculations using the fourth-order scheme of (8) 
with the analytical results. It is striking that, al- 
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FIG. 8. Analytical solution (solid line) and coarse grid (G, = 5.5) finite- 

difference solution (circles) for the fourth-order scheme. 

though the grid size corresponds to that of the 
second-order coarse grid (Figure S), the results are 
comparable to those obtained from the second- 
order fine grid (Figure 4). 

Expressions for phase and group velocity as a 
function of grid points per wavelength can be de- 
veloped for the fourth-order, finite-difference 
scheme by the method used in the appendix. The 
results for the one-dimensional case are given by 

CP G 
~=~~in~‘((1+1/3sin~a/G)~‘2psina/G) 

0 n- 

co (1 - sin2 ?r/G)‘12 
-=--_ 
Co [ 1 - (l+ l/3 sin2 r/G)f2 sin2 T/G]“~ 

1-k 2/3 sin2 r/G 

> 

(11) 

(1+1/3sin27rlG)‘/2 ’ 

These expressions are plotted in Figure 9 for 
two different values of the parameter p. Velocity 
curves for the second-order expression with p near 
the stability limit are shown for comparison. It 
may be seen that less dispersion is predicted for 
the fourth-order scheme near its stability limit 
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FIG. 9. Normalized phase and group velocity 
for different stability ratios for the fourth-order 
scheme (0 = 0). Curves for the second-order 
scheme with p= .7 are shown for comparison. 

(p-.6) than for the second-order scheme at its 
stability limit ($11.7) ; this prediction is consistent 
with the results. 

From the comparison described, it can be con- 
cluded that the finite-difference method yields ac- 
curate results for models containing sharp corners, 
provided that the grid is sufficiently fine. In the 
writers’ opinion, ten or more grid points per wave- 
length at the frequency of the upper half-power 
point should be adequate when the usual second- 
order accuracy finite-difference scheme is em- 

ployed, while the fourth-order scheme seems to 
produce accurate results at five grid points per 
wavelength at the frequency of the upper half- 
power point. The resulting savings in computer 
memory requirements and computational time
are sufficient to justify the added complexity of 
the algorithm. If an insufficient number of grid 
points per wavelength is used, the grid dispersion 
effect leads to inaccurate results. It is important 
that one bear this in mind when using finite- 
difference methods for more complex structures 
where many closely spaced events are present, 
since grid dispersion can distort the results to a 
point where serious errors may be made in inter- 
pretation of the events. 
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APPENDIX 

Expressions for phase and group velocity for the second-order finite-difference scheme will be de- 
veloped in this appendix. 

Consider harmonic plane wave propagation of the form 

U = UOei(ot-ko COB O-kz sin 9) 7 WI 

where 0 is the angle between the direction of propagation and the s-axis. If (Al) is substituted into 
(7) one obtains 

Since kh/Z=n/G, (A2) can be written as 

CP (J G. 
- 3 -- = _ Sin-l 
Co kCo PT 

(p [sin2 (y?!) + sin2 (TT$2)]1’2) . 

(A21 

(A31 

For the limiting case of propagation parallel to the grid (0=0), (A3) reduces to the one-dimensional 
result 

CP G 7r 
-= - sin-’ 
co Pa [ 1 

p sin - . 
G 

645) 

The corresponding expression for group velocity is obtained by differentiation of (A2) with respect to k 
and is given by 

co [sin(~c*s8)cos(~cos8)coiB+sin(~sin8)cos(~sin8)sin8] (Aij) 

For the limiting case of propagation parallel to the grid, (A6) also reduces to the one-dimensional 
result 

Co cos n/G 
_p 

c, - 
__. 

(1 - p2 sin2 ?r/G)‘j2 
(A71 
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