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Empirical Improvements for Estimating Earthquake Response

Spectra with Random-Vibration Theory

by David M. Boore and Eric M. Thompson

Abstract The stochastic method of ground-motion simulation is often used in
combination with the random-vibration theory to directly compute ground-motion in-
tensity measures, thereby bypassing the more computationally intensive time-domain
simulations. Key to the application of random-vibration theory to simulate response
spectra is determining the duration (Drms) used in computing the root-mean-square
oscillator response. Boore and Joyner (1984) originally proposed an equation for
Drms, which was improved upon by Liu and Pezeshk (1999). Though these equations
are both substantial improvements over using the duration of the ground-motion ex-
citation for Drms, we document systematic differences between the ground-motion
intensity measures derived from the random-vibration and time-domain methods for
both of these Drms equations. These differences are generally less than 10% for most
magnitudes, distances, and periods of engineering interest. Given the systematic
nature of the differences, however, we feel that improved equations are warranted.
We empirically derive new equations from time-domain simulations for eastern
and western North America seismological models. The new equations improve the
random-vibration simulations over a wide range of magnitudes, distances, and oscil-
lator periods.

Online Material: SMSIM parameter files, tables of coefficients and model
parameters, and shaded contour plots of TD/RV ratios for two WNA models.

Introduction

The stochastic method (Boore, 2003) is widely used for
the simulation of seismic ground-motion intensity measures
(GMIMs), such as peak acceleration and response spectral
amplitudes, particularly for regions lacking strong-motion
recordings for magnitudes and distances of engineering
interest. Recent applications include the ongoing PEGASOS
Refinement Project in Switzerland (Abrahamson et al., 2002;
Renault et al., 2010) and the Pacific Earthquake Engineering
Research (PEER) Center’s Next Generation Attenuation–East
(NGA-E) project (see Data and Resources section). The
GMIMs can be simulated using either time-domain (TD) or
random-vibration (RV) simulations, given the model describ-
ing the Fourier spectrum of ground motion (this spectrum
includes source radiation effects and the amplitude changes
due to propagation from the source to the site) and a descrip-
tion of the duration of ground shaking at the site (which is
made up of source and path contributions; this duration of
excitation is denoted here asDex). RV simulations are usually
thousands of times faster than TD simulations; the shorter
computational times are important for computationally inten-
sive applications such as inverting data for model parameters
(Scherbaum et al., 2006) or simulating the probability den-

sity distribution of GMIMs by Monte Carlo simulations that
sample the probability distributions of the model parameters.

Although the calculations are much quicker, there is a
potential fundamental problem with RV simulations: the
basic assumptions behind RV calculations, such as quasi sta-
tionarity of the equivalent time series and the statistical in-
dependence of consecutive maxima of the time series, are not
obviously satisfied, particularly for long-period GMIMs. To
overcome these limitations, modifications to the RV simula-
tions in which two measures of duration are used were pro-
posed by Boore and Joyner (1984), denoted by BJ84. The
measure of most concern to us is Drms, the duration used to
compute the root mean square (rms) of the oscillator re-
sponse. BJ84 introduced an equation for Drms, and Liu and
Pezeshk (1999), denoted by LP99, using BJ84 as the starting
point, proposed a different equation. Both the BJ84 and LP99
equations were based on comparisons of TD and RV simula-
tions for the same model, as well as some theoretical
considerations. The adequacy of those modifications, how-
ever, was demonstrated only for a few magnitudes and dis-
tances by comparing response spectra plotted using a log
scale for the ordinate. We recently had occasion to look more
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carefully at the comparisons for a wide range of magnitudes
and distances, using ratios of TD and RV simulations. An ex-
ample is shown in Figure 1. The stochastic simulations were
generated with the SMSIM software (Boore, 2005). The
model parameters are given in Table 1 and in the Ⓔ electro-
nic supplement to this paper, as discussed later. As shown in
Figure 1, the results using the LP99 equation are generally
better than those using the BJ84 equation, and both are gen-
erally much better than usingDex in computing the rms of the
oscillator response, particularly for magnitudes of 6 and
greater. In spite of the improvements obtained using the
equations introduced by BJ84 and LP99, there are significant
discrepancies from the TD results (which we take to be the
correct GMIMs, given the assumed seismological model),
particularly at long periods. There is also a consistent, but
small, bias at short periods that is essentially independent
of magnitude and distance. These discrepancies are hard
to see on traditional plots of GMIMs using a log scale for

the ordinate because the GMIMs span a wide range of am-
plitudes as a function of period for a given magnitude and
distance. In this paper, we evaluate the existing Drms equa-
tions for more magnitudes and distances than were originally
used to derive these equations, and from these results we pro-
vide improvements to the Drms equations for several stochas-
tic-method models. We start with a brief review of the RV
method as used in the stochastic method developed by Boore
(1983, 2003). This is followed by the main section contain-
ing the improved equation for Drms.

Review of RV Simulations

As discussed in Boore (1983, 2003), the RV simulations
are based on two things: (1) the rms of the GMIM (yrms),
obtained through Parseval’s theorem from the seismologi-
cal-dependent model of the Fourier amplitude spectrum,
and (2) a peak-to-rms factor (p � ymax=yrms), relating the
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Figure 1. Ratios of the pseudoabsolute response spectral acceleration (PSA) computed from TD simulations to the PSA computed with
random vibration theory using the BJ84 and LP99 Drms equations for different magnitudes and distances, and using the ENA model given in
Table 1 with no low-cut filter. Also shown is the TD/RV ratio when Drms � Dex (i.e., no RV modification to account for the oscillator
response). The ordinate scale was chosen deliberately to emphasize the results using BJ84 and LP99, at the expense of truncating the
TD/RV ratios for the Drms � Dex case, which have minimum values near 0.6. Note that the shaded regions encompass the range of ratios
obtained for three different stresses: 62.4, 250, and 1000 bars. The color version of this figure is available only in the electronic edition.
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peak GMIM (ymax) to yrms. In this paper, we compute p using
the equations given by Boore (2003), which are based on
equation (6.8) in Cartwright and Longuet-Higgins (1956).
Another method for computing p is given by Der Kiureghian
(1980). We have compared GMIMs from both methods and
do not find that one is better than the other; for the sake of
consistency, the oscillator modifications given in this paper
should be used with the Boore (2003) computation of p.

Boore and Joyner (1984) introduced a modification to
the RV method for computing response spectra by using dif-
ferent duration measures in computing p and yrms. The dura-
tion of ground motion, Dex, is used in computing p, while
yrms is computed using a modification of Dex that accounts
for the increase in duration due to oscillator response; this
duration is termed Drms. This paper is fundamentally con-
cerned with computing Drms as a function of magnitude, dis-
tance, oscillator period, and the seismological model.

A New Equation for Computing Drms

A useful equation for determining the Drms that will
provide agreement between the TD and RV simulations for
a given set of model parameters, including oscillator period,
magnitude, and distance, is easily derived from the defini-
tions of yrms and the rms-to-peak factor p. From Parseval’s
theorem,

yrms �
������������������
m0=Drms

p
; (1)

where m0 is the zeroth spectral moment (e.g., Boore, 2003)
and Drms is the duration to be used in computing yrms. From
the definition of p given in the Review of RV Simulations
section, we have

ymax � p × yrms: (2)

As discussed before, p depends on Dex, the duration of
ground motion, and not on the duration of the oscillator
response. Now consider two estimates of ymax: one from
the TD simulation (assumed to be the correct value) and one
from the RV simulation with no adjustment to account for the
oscillator response (i.e., Drms � Dex). Call them ytd and yxo,
respectively. Equations (1) and (2) give

ytd � p ×
������������������
m0=Drms

p
(3)

and

yxo � p ×
����������������
m0=Dex

p
: (4)

Because p is the same in both equations, equations (3)
and (4) can be solved for the value of Drms that will give
the correct value of ground motion when used in the RV
simulations:

Drms � Dex�yxo=ytd�2 (5)

or

Drms=Dex � �yxo=ytd�2: (6)

To illustrate the use of equation (6), we generated both TD
and RV simulations for the models given in Table 1 and Ⓔ
the parameter input files contained in the electronic supple-
ment to this paper. We used the SMSIM software (Boore,
2005) for the simulations. The base model for the illustra-
tions in this paper is the eastern North America (ENA) single-
corner frequency (SCF) model (we used this model because
an important application of the stochastic method is in
deriving ground motions in ENA, as in the ongoing NGA-
E project). For each magnitude–distance pair, we use the ar-
ithmetic mean of the response spectra of 800 TD simulations
as the TD GMIM (we found that such a large number was
necessary to obtain relatively smooth pseudoabsolute re-
sponse spectral acceleration [PSA] when plotted versus per-
iod). The motions in Figure 1 considered a range of stress
parameters (a factor of 4 on either side of 250 bars), and
the results show that the TD/RV ratio is not sensitive to
the stress parameter. For that reason, we used 250 bars
(see Boore, 2009) and generated ytd and yxo for many values
of magnitude, distance, and oscillator period. The results are
shown in Figure 2, where Drms=Dex � �yxo=ytd�2 is plotted
against both the oscillator period To and the normalized os-
cillator period To=Dex for (top row) one distance and many
magnitudes and (bottom row) one magnitude and many dis-
tances. Using the normalized oscillator period removes much
of the apparent variability in Drms=Dex, suggesting that a re-
latively simple functional form in terms of To=Dex can be
found that will improve upon the BJ84 and LP99 equations
for Drms.

Functional Form

The general form of the equation used by BJ84 and LP99
to obtain Drms is

Table 1
Essential Differences in the Stochastic-Method Models Used in the Simulations Discussed in This Paper*

Model Source Path Attenuation Path Duration κ (s)

ENA: SCF Single-corner frequency Atkinson (2004) Atkinson and Boore (2006) 0.005
ENA: AB95 Double-corner frequency (Atkinson and Boore, 1995) Atkinson (2004) Atkinson and Boore (2006) 0.005
WNA: SCF Single-corner frequency Raoof et al. (1999) 0:05R 0.030
WNA: AS00 Double-corner frequency (Atkinson and Silva, 2000) Raoof et al. (1999) 0:05R 0.030

*See the Ⓔ electronic supplement to this paper for the parameter files used in the simulations.
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Drms � Dex �Do

�
γn

γn � α

�
; (7)

where γ � Dex=To. Do is the oscillator duration To=2πζ,
where ζ is the fractional damping of the oscillator, usually
0.05. As we saw in Figure 2, To=Dex rather than To is a better
predictor variable for Drms=Dex. For this reason, we rewrite
equation (7) as

Drms=Dex � 1� 1

2πζ

�
η

1� αηn

�
; (8)

where η � To=Dex. BJ84 recommend n � 3 and α � 1=3.
LP99 recommend n � 2 and α to be determined from an
equation that accounts for spectral shape. Equation (8) has
the property that Drms=Dex approaches unity for small and
large values of η for n > 1. These are physical constraints
that follow from the oscillator time series being proportional
to the ground acceleration and ground displacement at short
and long periods, respectively, and therefore the duration of
the oscillator response will be equal to the duration of the
ground motion at these asymptotic values of period. But
Figure 2 shows that Drms=Dex does not always approach
unity, and in many cases it approaches a different value as η
approaches zero than when η approaches infinity. Drms=Dex

is given by the ratio of RV to TD simulations (equation 6),
and thus the fact that Drms=Dex does not approach the the-
oretical value of unity indicates a bias between the RVand TD
simulations. To allow for the empirical observation that
Drms=Dex does not approach unity for small and large values
of η, we add a term to equation (8) to get

Drms=Dex �
�
c1 � c2

1 � η2

1� η2

��
1� 1

2πζ

�
η

1� αηn

��
;

(9)

which approaches c1 � c2 as η approaches zero and c1 � c2
as η approaches infinity. This equation is still not general
enough to capture the range in shapes of Drms=Dex that we
observe, so we further generalize the equation by allowing α
and n to be free coefficients (c5 and c6, respectively) to be
estimated from the data and by adding three more coeffi-
cients (c3, c4, and c7):

Drms=Dex �
�
c1 � c2

1 � ηc3
1� ηc3

��
1� c4

2πζ

�
η

1� c5ηc6

�
c7
�
:

(10)

This is the equation that we fit to the simulated Drms=Dex

ratio, with a set of coefficients for each magnitude and
distance.
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Figure 2. Squared ratios of PSA from RV simulations (for which Drms � Dex) and TD simulations, for the ENA SCF model in Table 1
with 250 bar stress parameter and no low-cut filter, plotted against period (To) and period normalized by the duration of excitation (To=Dex).
The top row shows ratios for a fixed distance (20 km) and a range of magnitudes; the bottom row shows ratios for a fixed magnitude (6.5) and
a range of distances.
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Estimation of the Coefficients

We used the SMSIM programs tmrs_loop_rv_drvr
and tmrs_loop_td_drvr to generate GMIMs for a set of 15
distances logarithmically spaced from 2 to 1262 km and 9
magnitudes linearly spaced from 4 to 8. For each
magnitude–distance pair, we computed PSA at 200 logarith-
mically spaced periods for 5% damping. We do not provide
coefficients for other damping levels because we prefer to

use correlations of PSA for various damping levels, such as
those of Cameron and Green (2007) and those being devel-
oped for the PEER Next Generation Attenuation–West 2
(NGA-W2) project (see Data and Resources section), which
can be used to adjust for simulations of PSA for other levels
of damping. We computed Drms=Dex for several ENA and
western North America (WNA) models, including SCF and
double-corner frequency models. An additional considera-
tion is the low-cut filter; we simulated the GMIMs with no
low-cut filter and with a low-cut filter frequency (flc) of
0.03 Hz. The illustrations in this article used as a base case
the SCF model for ENAwith no low-cut filter. The Drms=Dex

ratio depends on whether a box or an exponential window
is used in the TD simulations. Because we think that most
users prefer the more realistic look of the acceleration
time series computed using the exponential window, we only
report coefficients for the exponential TD window of Sara-
goni and Hart (1974). This was also the window used for
the simulations on which the BJ84 and LP99 equations were
based.

Table 2
The Range of the Parameters in Equation (10) Used in

the Genetic Algorithm

Parameter Minimum Maximum

c1 0.7 1.2
c2 −0.6 0
c3 2 2
c4 0 3
c5 0 50
c6 1 10
c7 0 10
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Figure 3. Plots of Drms=Dex as estimated from equation (6), that is, �yxo=ytd�2, as a function of η � To=Dex for the same M, R, and
stresses as in Figure 1. The BT12 curves are from equation (10), with the coefficients derived from fitting theDrms=Dex values obtained from
the TD and RV simulations. The BJ84 and LP99 curves are from equation (8), with the coefficients recommended by the respective authors.
The color version of this figure is available only in the electronic edition.
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Given the complex functional form of equation (10), the
interdependence of the parameters, and the restricted range
of possible values that the parameters may take, we decided
to use a genetic algorithm (GA) to search the parameter space
for the best values of the coefficients. Given the insensitivity
to stress, we defined the misfit relative to Drms=Dex for a sin-
gle representative stress value for each region (100 bars for
WNA, 250 bars for ENA). The ranges of allowable values for
the coefficients are listed in Table 2 (based on exploratory
calculations, we decided to constrain c3 to the value 2.0).
The GA uses 256 for the population size and the maximum
number of generations. For each magnitude–distance bin, we
computed two GA estimates of the coefficients, using two
seeds to generate initial populations of models, and selected
the GA estimate leading to the best fit as the final estimate .
The two estimates were (1) using the coefficients from the
previous magnitude at the same distance, and (2) using the
previous distance at the same magnitude (except for the first
magnitude–distance bin, which used the coefficients that
simplify equation 10 to the BJ84 equation). We derived coef-
ficients for equation (10) from simulations for the two base-
case SCF models for ENA and WNA; Ⓔ the coefficients are

available in the electronic supplement to this paper. We
validated these equations at the midpoints between the mag-
nitudes and distances where the coefficients are defined (geo-
metric midpoints for distance) and found no increase in the
misfit to Drms=Dex. For magnitude and distance values not in
the coefficient tables, we first compute Drms=Dex for the four
tabulated moment magnitude (M) and distance (R) pairs sur-
rounding the desired M and R, and then use bilinear inter-
polation to obtain Drms=Dex.

Some Results Using the New Equation

A sample of the simulated and fitted Drms=Dex ratios is
given in Figure 3, along with Drms=Dex from the BJ84 and
LP99methods for computingDrms. The TD/RV ratios obtained
using the new computations of Drms (designated by BT12,
after the authors’ last initials and year of publication of this
paper) are shown in Figure 4, which is the same as Figure 1
with the addition of the RV simulations using the BT12
computations. Figure 5 displays a different way of showing
the comparison, using shaded contour plots for a wide range
of periods and distances for a set of magnitudes and methods
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Figure 4. Same as Figure 1 with the addition of the ratios computed using the Drms equation proposed in this paper (BT12). The color
version of this figure is available only in the electronic edition.

766 D. M. Boore and E. M. Thompson



to computeDrms. As shown in the figure, usingDrms � Dex in
the RV simulations will give good agreement with the TD
simulations only for restricted (and correlated) regions of dis-
tance and period. Both the BJ84 and the LP99 equations result
in improvements over the case of no modification toDrms and
lead to values within about 10% of the TD simulations for per-
iods ranging from less than about 1 s for M 4 to periods of
about 100 s or even longer for M 8. The results from using
the LP99 equation are the same as those from using the
BJ84 equation for short periods, but they differ for longer per-
iods, for which RV simulations using the LP99 equation are

closer to the TD simulations than are those from the RV
simulations that use the BJ84 equation. Because engineering
applications are often concernedwith periods that are less than
one or two seconds, Figure 5 suggests that the BJ84 and LP99
equations will give reasonable results in many cases. But the
new equation (BT12) leads to a significant improvement in the
RV simulations, compared to the BJ84 and LP99 computations,
over a wide range of magnitudes, distances, and periods, and
as the new equation is easy to implement, we recommend its
use over the previous equations for determining Drms in RV
simulations.

Figure 5. A shaded contour plot of the TD/RV ratios for the ENA SCF 250 bar, no low-cut filter model for (top row) Drms � Dex (no
modification for an oscillator) and the following models for calculating the Drms used in the RV simulations: (second row) BJ84, (third row)
LP99, and (bottom row) BT12. The results of using the BT12 calculations of Drms look blank because the ratios are within �5:3% of unity.
The color version of this figure is available only in the electronic edition.
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Using Drms Computations in Models for Which
the Coefficients Were Not Derived

The results in Figure 5 for the BT12 calculations are a
consistency check to confirm that the computationswere done
correctly, because the coefficients in the equation for Drms

were designed to match the TD simulations for this model
(the SCF ENA model, with no low-cut filter). The good agree-
ment between the TD and RV simulations says nothing about
the applicability of the BT12 coefficients used in Figure 5
for RV simulations based on other models. We address that
in this section by comparing TD and RV simulations for other
models for which the BT12 coefficients were not derived
using equation (10) with the base-case ENA and WNA BT12
coefficients to compute Drms in the RV simulations. We con-
sider SCF and double-corner frequency models for both ENA
and WNA (Table 1), and for each source model we consider
two models, one with no low-cut filter and one with a low-cut
filter of 0.03 Hz, for a total of eight models. The best way to
appreciate the differences in the ground-motion models is to
look at the Fourier acceleration spectra (FAS) for representa-
tive magnitudes and distances. These are shown in Figure 6.

The differences in low-frequency amplitudes for the ENA and
WNA models are primarily due to the differences in geome-
trical spreading (1=R1:3 for ENA and 1=R for WNA); these dif-
ferences are not important for the RV versus TD comparison
because geometrical spreading does not affect the shape of the
FAS. Ofmuchmore importance are the other differences in the
models, including whether the source spectra have one or two
corner frequencies, the whole-path attenuation parameter
Q�f�, and the high-frequency diminution parameter κ0. This
latter parameter is very different between the ENA and WNA
models (0.005 s and 0.030 s, respectively), and this leads to
the pronounced differences in the high-frequency FAS at close
distances.

Comparisons of the RV and TD simulations for the ENA
models that were not used in deriving the BT12 coefficients
for ENA are shown in Figure 7. The top row of graphs is for the
SCF model with a low-cut filter of 0.03 Hz. The mismatch
between the TD and RV simulations is only important for
periods greater than the filter period (33 s) and becomes
increasingly important as the magnitude increases (because
larger earthquakes have relatively more long-period energy
than smaller earthquakes, and thus the long-period oscillator
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Figure 6. FAS for models used in this paper (see Table 1 and the Ⓔ electronic supplement to this paper) for selected magnitudes and
distances. The color version of this figure is available only in the electronic edition.
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response will be more sensitive to low-cut filtering). The next
two rows of graphs in Figure 7 are for the double-corner ENA
model, without and with a low-cut filter, respectively. As
before, the new modifications work well for shorter periods,
with significant differences only for longer periods. The les-
son from Figure 7 is that, for most cases of interest (periods
less than about 10 s), the BT12 coefficients derived from the
case of SCF without low-cut filtering work well. A similar
conclusion holds for the WNA models (Ⓔ see the electronic
supplement to this paper, inwhich TD and RV ratios are shown
for four models, similar to those used for ENA: SCF and dou-
ble-corner frequency, without and with low-cut filtering).

A harsher test of the applicability of the new equation
forDrms is to use the equation with coefficients from the ENA
model in RV predictions of motions for a WNA model, and
vice versa (note that the spectral moments for the RV simula-
tions will be computed from the correct ground-motion
model; it is only the Drms computation that mixes models).

These results are shown in the top two rows of Figure 8 for
the SCF ENA and WNAmodels. Except for the smallest earth-
quake (at periods that increase with distance), the “wrong”
coefficients work quite well. This led us to consider using an
average of the Drms’s computed for the ENA and WNA coef-
ficients in the RV simulations (i.e., BT12-combined); these
results are shown in the bottom two rows of Figure 8. In gen-
eral, the comparison with the TD simulations is now quite
good. It clearly is impossible to sample all possible models,
but we feel that these models encompass a wide range of the
models currently in use.

Discussion and Conclusions

Using TD and RV simulations for response spectra over a
wide range of periods, magnitudes, and distances, we first
evaluated existing equations to determine the duration (Drms)
used to compute rms accelerations in RV stochastic-method
simulations; these equations are from Boore and Joyner

Figure 7. A shaded contour plot of the TD/RV ratios for various ENA models not used to derive the coefficients used in the BT12 Drms
computations (see Table 1 andⒺ the electronic supplement to this paper for model details). The base-case ENA BT12 coefficients were used
in these comparisons. Top row: ENA SCF 250 bar model with a 0.03 Hz low-cut filter. Middle row: ENAAB95 two-corner model, no low-cut
filter. Bottom row: ENA AB95 two-corner model, 0.03 Hz low-cut filter. The color version of this figure is available only in the electronic
edition.
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(1984) and Liu and Pezeshk (1999). We found that the
LP99 equation generally works better than that of BJ84, and
that the RV simulations using the BJ84 and LP99 equations
are within about 10% of the TD simulations for the magni-
tudes, distances, and periods of most engineering interest
(M ≳5, R ≳ 10 km, and T ≲ 2 s forM 5, increasing to more
than 100 s forM 8). There is a considerable amount of varia-
bility in the ratio of TD to RV simulations in this range, how-
ever. To improve the RV simulations, we derived a new
equation for the computation of Drms. The new equation for
Drms leads tobetter agreementwithTDsimulations throughout

a large range of magnitudes, distances, periods, and seismo-
logical models than if the previous equations forDrms are used
in the RV simulations. The improvements are particularly ef-
fective for small magnitudes and long periods, but they also
remove a small but persistent bias at short periods. Using
the new equation adds only a negligible increase in the com-
putational time; even with the new equation, the RV simula-
tions are thousands of times faster than the TD simulations.
A fundamental factor in the relatively long computational time
for the TD simulations is that many simulations are needed to
produce relatively smooth response spectra (we used 800

Figure 8. A shaded contour plot of the TD/RV ratios for various ENA and WNA models not used to derive the coefficients used in the
BT12 Drms computations (see Table 1 and Ⓔ the electronic supplement to this paper for model details). Top row: ENA SCF 250 bar model
with no low-cut filter, using Drms computed from the BT12 WNA coefficients. Second row: WNA SCF 100 bar model with no low-cut filter,
using Drms computed from the BT12 ENA coefficients. Third row: ENA SCF 250 bar model with no low-cut filter, using an average of Drms
computed from the BT12 ENA andWNA coefficients. Bottom row:WNA SCF 100 bar model with no low-cut filter, using an average ofDrms
computed from the BT12 ENA and WNA coefficients. The color version of this figure is available only in the electronic edition.
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simulations for each magnitude and distance in this paper). In
addition, the small value of thediminution parameterκ0 for the
ENA models results in a richer content of high-frequency
ground motions for ENA than for WNA, and this increased
high-frequency content requires a much smaller time step
in the ENA TD simulations, which substantially increases
the time required to generate a time series (we use dt �
0:001 s for ENA and dt � 0:005 s for WNA).

The coefficient tables we provide for the computation of
Drms were generated for TD simulations using an exponential
time window, rather than a box window (the BJ84 and LP99
modifications also used an exponential window), and the
rms-to-peak factors used in the computations were those
discussed in Boore (2003), from Cartwright and Longuet-
Higgins (1956), rather than an alternative such as Der Kiur-
eghian (1980). For consistency, any comparisons of TD and
RV results should use these stochastic-model parameters.

Two sets of coefficients for the new equation forDrms are
provided: one for a standard ENAmodel and one for a standard
WNA model. The models differ in many ways, the most
important for this paper being the value of κ0: 0.005 s for
ENA and 0.030 s for WNA. Although the coefficients depend
on the particular model for which they were derived, we find
that in general the RV simulation results are not too sensitive to
which set of coefficients is used. The exceptions to this are for
very long periods, large distances, and small magnitudes,
which do not control the hazard for most earthquake hazard
analyses.We recommend using the set of coefficients from the
model closest to the one under consideration. In particular,
models with very small values of κ0 should use the ENA coef-
ficients, while those with larger values should use the WNA
coefficients. For intermediate values of κ0, the average of
the Drms’s computed from the ENA and the WNA coefficients
can be used in the RV simulations. Of course, it is good prac-
tice to spot check the RVand TD simulations for situations in
which the ground-motion models are not similar to either of
those used here.

Data and Resources

The latest version of the SMSIM programs used for the
simulations can be obtained from the online software link at
http://www.daveboore.com (last accessed on October 2011);
their use is described in Boore (2005). Version 3.29 (and
higher) of SMSIM contains the coefficient files for the de-
fault Drms coefficients (based on single-corner frequency
eastern North America [ENA] and western North America
[WNA] models, with no low-cut filter), and the random-
vibration programs and parameter files have been modified
to make use of these coefficients. The genetic algorithm cal-
culations were done using the R package rgenoud (Mebane
and Sekhon, 2011), which can be obtained from http://www
.r-project.org/ (last accessed on October 2011). A description
of the Next Generation Attenuation–East (NGA-E) project is
given in http://peer.berkeley.edu/ngaeast/ (last accessed on
October 2011), and the NGA-W2 task for developing damp-

ing modifications is discussed in http://peer.berkeley.edu/
ngawest2/tasks/task-6-damping-scaling/ (last accessed on
October 2011).
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