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Abstract The influence of noise in strong-motion records is most problematic at low and
high frequencies where the signal to noise ratio is commonly low compared to that in the mid-
spectrum. The impact of low-frequency noise (<1 Hz) on strong-motion intensity parameters
such as ground velocities, displacements and response spectral ordinates can be dramatic and
consequentially it has become standard practice to low-cut (high-pass) filter strong-motion
data with corner frequencies often chosen based on the shape of Fourier amplitude spectra and
the signal-to-noise ratio. It has been shown that response spectral ordinates should not be used
beyond some fraction of the corner period (reciprocal of the corner frequency) of the low-cut
filter. This article examines the effect of high-frequency noise (>5 Hz) on computed pseudo-
absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency
noise our analysis shows that filtering to remove high-frequency noise is only necessary in
certain situations and that PSAs can often be used up to 100 Hz even if much lower high-
cut corner frequencies are required to remove the noise. This apparent contradiction can be
explained by the fact that PSAs are often controlled by ground accelerations associated with
much lower frequencies than the natural frequency of the oscillator because path and site
attenuation (often modelled by Q and κ , respectively) have removed the highest frequencies.
We demonstrate that if high-cut filters are to be used, then their corner frequencies should be
selected on an individual basis, as has been done in a few recent studies.
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1 Introduction

In the past decade with the growing interest in displacement-based design and analysis (e.g.
Fajfar 1999; Bommer and Elnashai 1999; Priestley et al. 2007) and with near-source digital
recording of a number of large earthquakes (e.g. 1999 Chi-Chi), many articles have been
published discussing the processing of strong-motion records to obtain reliable ground dis-
placements and long-period (>2 s) response spectral displacements (SDs) (e.g. Boore 2001,
2004; Akkar and Bommer 2006; Jousset and Douglas 2007; Paolucci et al. 2008; Rupakhety
et al. 2010). In contrast, the processing of accelerograms to obtain reliable short-period (high-
frequency) (T < 0.1 s, fosc > 10 Hz) spectral accelerations has not received much recent
attention. However, the design and analysis of non-structural elements, equipment and pipe-
work (e.g., in nuclear power plants) requires predictions of earthquake ground motions up to
high frequencies (e.g. US Nuclear Regulatory Commission 2007, 2008) and, consequently, a
number of recent ground-motion prediction equations (GMPEs) present coefficients to pre-
dict pseudo-absolute response spectral accelerations (PSAs) up to 100 Hz (e.g. Power et al.
2008).

During the era of analogue accelerographs (e.g. Kinemetrics SMA-1) an active topic of
research was the processing of strong-motion records to remove the effect of instrument
response, which affects high-frequency measurements from such instruments (e.g. Trifunac
1972). However, correction for instrument response for records from these instruments leads
to magnifications of high-frequency noise that then needs to be filtered out since it can dom-
inate the signal (e.g. Converse and Brady 1992). Time series from digital accelerometers
generally do not require adjustment for instrument response because either such instruments
already correct for their own response or the instrument has such a high natural frequency
(>50 Hz) that such a correction is deemed not necessary. Records from such instruments,
however, usually contain high-frequency noise, particularly if the analogue-to-digital con-
verter (ADC) has a low (10 or 12 bit) resolution or they are located at sites affected by
ambient (cultural), wind or wave sources of noise (Fig. 1). In addition, some strong-motion
stations are affected by mono-harmonic high-frequency noise, which can be caused by prox-
imity to electrical generators or vibrating machinery (Fig. 2). For these two examples the
high-frequency PSAs are not greatly affected by the noise, even though it is quite noticeable
in their Fourier amplitude spectra (FAS). However, it is important to know when this is the
case; when records need to be high-cut filtered (and how to select the corner frequencies of
the filters); and when the noise is too great and the data must be rejected. Unfortunately, as
noted above, there is little guidance in the literature on what processing should be applied
and its effect on obtained response spectral accelerations.

Records with poor high-frequency signal-to-noise ratios are likely to be those with low
amplitudes, i.e. from small earthquakes and/or long distances. Therefore, it could be argued
that the appropriate processing of such records is of limited interest for engineering purposes.
However, when deriving GMPEs it is important that the datasets used are not biased by only
including those records that are of higher than average amplitudes, which would be the case
if only records with high signal-to-noise ratios were selected. This is a similar situation to not
accounting for untriggered instruments when conducting regression analysis (e.g. Bragato
2004). Hence, extraction of reliable ground-motion parameters from noisy records, even if
they come from small earthquakes or large distances, is necessary.

The aim of this article is to present examples of high-cut filtering and its effect on PSAs
and give guidance on such filtering, in particular of records from digital instruments. In
addition, we assess the impact of not applying high-cut filtering on noisy records because,
contrary to what would be expected, high-cut filtering is not always required or desirable
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Fig. 1 Example of strong-motion record featuring significant high-frequency noise (above 22 Hz) and the
effect on PSA of applying various high-cut filters. The record is the NS component from the Oseyrarbru
station of the Icelandic Strong-Motion Network of the 17th June 2000 (mb3.9) Hengill earthquake. Epicentral
distance repi = 20 km. a uncorrected acceleration time series; b Fourier amplitude spectra (FAS) of signal
and pre-event noise (first 5.12 s of record, corrected for duration differences of the event and the noise sample
by multiplying the noise FAS by the square root of the ratio of the event and the noise durations); c PSAs
for unfiltered record and PSAs for record filtered using a causal Butterworth frequency with high frequency
response going as ( fc/ f )6, where fc = 20 Hz and 40 Hz. Note that, in this case, the spectra from the filtered
time series are very similar to those from the noisy uncorrected record. Also indicated as thick marks at the
right-hand side of this plot are the PGAs read directly from the time series (the PSA are plotted to 200 Hz to
capture the high-frequency equivalence of PSA and PGA)

even for noisy records. The article begins with a brief review of previous recent work on this
topic. Following this some examples of the effect on computed PSAs of filtering of records
(both real and simulated) affected by different levels of noise (both real and simulated) from
sites with high and low κ (e.g. Anderson and Hough 1984) are shown. The article ends
with some guidance on high-frequency filtering. In the following, since we are interested in
high-frequency PSAs, most spectra start at 5 Hz and end at 100 Hz (the highest frequency
generally considered in engineering seismology). All PSAs considered here are for linear
elastic systems and a critical damping ratio of 5%.

2 Previous studies

The Basic strong-motion Accelerogram Processing (BAP) software written by the USGS
(Converse and Brady 1992) or derivatives are commonly used for the routine filtering of
acceleration time series. This software includes a routine (HICUT) for high-cut filtering using
a cosine half-bell taper in the frequency domain [this is applied after the instrument correction
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Fig. 2 Example of strong-motion record featuring quasi mono-harmonic noise at 50 Hz, with a broader and
more subdued noise source near 78 Hz and the effect on PSA of applying various high-cut filters. The quasi
mono-harmonic noise is thought to be due to the proximity to electrical generators. A vertical gray line has
been added at 50 Hz on the PSA graph to focus on the influence of the 50 Hz noise on the response spectrum
and the consequence of high-cut filtering to reduce that noise. The record is the longitudinal component from
the station at the Sultartanga-Hydroelectric Power Plant of the Icelandic Strong-Motion Network of the 17th
June 2000 (M 6.5) South Iceland earthquake. Joyner-Boore distance rjb = 39 km. See caption of Figure 1
for details of the subplots; the first 2.56 s was used for the noise sample. Although the equivalence of high-
frequency PSA and PGA occurs at a frequency less than 100 Hz, the PSA is plotted to 200 Hz for consistency
with Figs. 1 and 3

subroutine (INSCOR) for analogue records]. Guidance in the BAP manual (Converse and
Brady 1992) on the frequencies to be used for the filter transition (roll-off and cut-off) of
this filter is limited. The default values are: 50–100 Hz for digitally-recorded records and
for records that were digitized by the automatic trace-following laser digitizer employed
by the USGS; and 15–20 Hz for manually digitized records. However, it is noted that the
‘50-to-100 Hz transition will be too high for many records …[and] …the 15-to-20 Hz transi-
tion will be unnecessarily low for other records. Consequently, the user should either indicate
the transition band explicitly …or carefully consider whether the default provided by the soft-
ware is appropriate’ (Converse and Brady 1992). Converse and Brady (1992) present some
examples showing the importance of choosing appropriate filter transitions for analogue
records on which the noise has been magnified by correction for instrument response. In this
article only records from instruments not requiring instrument correction are considered and
consequently the examples from Converse and Brady (1992) are of little relevance here.

The recommendations of Converse and Brady (1992) influenced the decision of
Ambraseys et al. (2005), when deriving GMPEs based on European and Middle Eastern
data, to use uniform transitions of 23–25 Hz for analogue records (following instrument cor-
rection) and 50–100 Hz for digital records (without instrument correction) irrespective of
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Table 1 The highest frequencies ( fosc) (lowest periods, T ) for which various authors presented GMPEs for
the prediction of PSA (or SA) and their reasoning (if known)

References fosc( Hz) T ( s) Reason

Johnson (1973) 18 0.055 Not known
Trifunac (1978) 25 0.04 Records instrument corrected and high-cut

filtered at 25 Hz
Joyner and Boore (1982) 10 0.1 Inaccurate instrument correction

above 10 Hz (Joyner and Boore
1988)

Ambraseys et al. (1996) 10 0.1 Records high-cut filtered at 25 Hz
Sabetta and Pugliese (1996) 25 0.04 Records instrument corrected and high-cut

filtered with cut-offs between 20 and 35 Hz
(most about 25 Hz)

Abrahamson and Silva (1997) 100 0.01 Records instrument corrected and high-cut
filtered with individually chosen cut-offs,
fh . PSAs only used up to 0.8 fh hence less
than 100 records used at 100 Hz. They
assume that PSA(100 Hz) equals PGA

Campbell (1997) 20 0.05 Records high-cut filtered at 25 Hz
Sadigh et al. (1997) 20 0.05 Not known
Zhao et al. (2006) 20 0.05 Records instrument corrected and high-cut

filtered with cut-offs of either 24.5 Hz (50
samples-per-second data) or 33 Hz (100
samples-per-second data)

Danciu and Tselentis (2007) 10 0.1 Records high-cut filtered at 25 Hz
Boore and Atkinson (2008) 100 0.01 See text. The other NGA models also present

equations up to 100 Hz
Bindi et al. (2010) 33 0.03 Records instrument corrected and high-cut

filtered with cut-offs between roughly 20
(analogue data) and 30 Hz (digital data)

Note that the processing information given in the “Reason” column does not imply that the authors of the
GMPE did the processing; in fact, most of the GMPEs used data processed by others. Only GMPEs by Zhao
et al. (2006) and Boore and Atkinson (2008) in this list were derived using a large number records from digital
instruments (the other GMPEs are overwhelmingly based on records from analogue instruments)

the high-frequency noise. GMPEs were derived by Ambraseys et al. (2005) for peak ground
acceleration (PGA) and spectral accelerations (SAs) for T ≥ 0.05 s ( f ≤ 20 Hz); a period
range that was chosen based on the high-cut filters used. The high-cut filtering applied may
influence the predictions for PGA and SA for periods less than 0.1 s but, as shown below, the
effect is unlikely to be strong because the generally high κ in the active regions providing the
data used by Ambraseys et al. (2005) means that there is little energy in the strong-motion
data at frequencies above 10 Hz. Table 1 presents the highest frequencies for which GMPEs
were derived for various models and the reasons (when known) why higher frequencies were
not considered [see also Section 5 of Douglas (2003a)]. This table shows that worries over
the accurate recovery of high-frequency PSAs from filtered strong-motion records influenced
the authors’ decisions on the highest frequency for which to provide equations. It also shows
that considerable interpolation between GMPEs for PGA and those for high-frequency PSAs
is often required, which brings with it uncertainty in deciding on a frequency to associate
with PGA.

Boore and Bommer (2005) provide an overview of techniques for processing strong-
motion data. They briefly discuss high-cut filtering but their main focus is on long-period
motions. They show examples (their Fig. 6) contrasting the high-frequency content of
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Fig. 3 Example of strong-motion record with an excellent signal-to-noise ratio and the effect on PSA of
applying various high-cut filters. The record is the EW component from the PYLS (Luz-Saint-Sauveur) hard-
rock station of the French accelerometric network (Réseau Accélérometrique Permanent, RAP) (Péquegnat
et al. 2008) of the 17th November 2006 (M 4.4) normal-faulting earthquake near Lourdes (Sylvander et al.
2008). Epicentral distance repi = 19 km. See caption of Fig. 1 for details of the subplots; the first 8.19 s was
used for the noise sample. The rapid decay in the FAS starting at about 50 Hz is thought to be due to the
instrumental anti-aliasing filter. The PSA are plotted to 200 Hz to capture the high-frequency equivalence of
PSA and PGA

strong-motion records from sites with a low κ (with significant high-frequency motions)
and sites with a high κ (for which any high-frequency motions have been attenuated by the
travel path). They also discuss the importance of the Nyquist frequency (equal to half the
sampling rate of the data) beyond which motions cannot be measured.

When processing strong-motion data for the Next Generation Attenuation (NGA) database
the cut-off frequencies of both low- and high-cut filters were selected by visual inspection of
each time series and associated FAS (Darragh et al. 2004; Chiou et al. 2008). This is unusual,
as the individual selection of high-cut filters has not generally been standard practice in pro-
cessing strong-motion data, for even if care is taken in the choice of low-cut filters, uniform
high-cut filters are often employed (e.g. Ambraseys et al. 2005). After filtering acceleration
time series for the NGA database, the PSAs were computed up to 100 Hz even if the high-cut
filter applied had a much lower corner frequency (this is in contrast to low-cut filtering for
which a lowest usable frequency was reported). For example, even some recent digital records
were high-cut filtered with frequencies less than 10 Hz (NGA Flatfile 7.3, peer.berke-
ley.edu/products/nga_flatfiles_dev.html ) but PSAs were used from these
records up to 100 Hz by the NGA developers.

High-frequency noise levels on some high-quality strong-motion data recorded on 24 bit
instruments are sufficiently low that high-frequency filtering is not required (Fig. 3). How-
ever, low noise is uncommon and consequently the level of the high-frequency noise should
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be considered if PGAs and PSAs above 10 Hz are of interest—the following sections discuss
this. Figure 3 demonstrates the danger in applying high-cut filters to records from stations
with low κ values because there is considerable high-frequency energy present, which would
be removed by standard filtering; this issue is discussed below. For this record there is little
indication of natural attenuation of the ground motion at frequencies as high as 40–50 Hz,
and therefore the high-cut anti-aliasing filter in the instrument has probably distorted the true
PSA at high frequencies. The Nyquist frequency for this record is 62.5 Hz, but if the sample
rate for this recording had been much higher it is likely that PSA at high frequencies would
have been different than shown in the figure. On the other hand, Fig. 3 shows that varia-
tions in PSA occur at frequencies well above the Nyquist frequency of 62.5 Hz. There is no
inconsistency here, for the PSAs at oscillator frequencies near 100 Hz are being determined
by lower frequencies in the input record (in this case, the lack of high-frequency motion in
the input record is due either to the applied high-cut filters or the instrumental anti-aliasing
high-cut filter).

3 Effect of high-frequency noise on PSAs

The example of the noisy record with high κ [about 0.06 s based on inspection of a linear-log
plot of the Fourier amplitude spectrum, following Anderson and Hough (1984)] presented on
Fig. 1 shows that although the noise dominates above 20 Hz on the Fourier amplitude spec-
trum it does not have an effect on the response spectrum. In addition, high-cut filtering does
not greatly affect the PSAs. This section investigates when this behaviour can be expected.

The effect of high-frequency filtering on PSAs for records with different noise corner
frequencies ( fn) is demonstrated by Fig. 4. This figure shows the effect of filters of different
fc on PSAs with oscillator frequencies ( fosc) less than and greater than fn . The PSAs are
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Fig. 4 Ratios of PSAs at oscillator frequencies ( fosc) of: a 10 Hz and b 200 Hz from high-frequency filtered,
with corner frequencies fc , and unfiltered records shown in Figs. 1 and 2, with fns of 22 Hz and 48 Hz respec-
tively, against fc/ fn . The ratios of fosc to fn are given in the graph legends; those in graph a are less than
1 and those in graph b are greater than 1. Vertical green lines indicate when fc/ fn = 0.5 and consequently
when the ratios of PSAs from filtered and unfiltered records approch unity
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for the records shown in Figs. 1 and 2, for which fns of 22 Hz and 48 Hz are estimated (see
FAS shown in the original figures). Of particular relevance is the relation of fosc and fc

to fn , rather than the absolute values of the frequencies. For this reason we plot the PSA
ratios against the normalized frequency fc/ fn . The PSA ratios from both records approach
unity (i.e., the PSAs are unaffected by the filtering) when fc is greater than about half fn

(corresponding to about 11 and 24 Hz for the records shown in Figs. 1, 2 respectively),
but if smaller fc than fn were used PSA would be significantly underestimated, even for
high-frequency oscillators. This is because the oscillator response is being controlled by
lower-frequency motions, and filtering at a frequency less than the noise corner is clearly
removing signal from the record. This shows the importance of not using a standard fc for
all records (e.g., 20 Hz in Fig. 2) but individually choosing fc for a given record based on its
FAS.

3.1 Simulated time series

The previous examples show that the high-frequency energy content of the strong-motion
record can have a strong influence on whether high-cut filtering will have a significant impact
on the derived PSAs. For close source-to-site distances this energy content is mainly influ-
enced by κ , which is commonly believed to be mainly related to attenuation in the upper few
kilometres of the crust (e.g. Anderson and Hough 1984). To enable a parametric analysis of
the influence of κ and noise levels on PSAs computed before and after high-cut filtering we
decided to use ground-motion simulations computed using the stochastic method (e.g. Boore
2003b) with the addition of simulated noise.

Ground-motion simulations were conducted using a stochastic model for western North
America (WNA) with a single-corner-frequency model and a stress parameter Δσ of 70 bar
and κ = 0.04 s. Simulated accelerograms were obtained with no added noise and with white
noise added with amplitudes between 1 and 16 gal( cm/s2) (these amplitudes were chosen to
give high-frequency noise levels in FAS that are up to a factor of 100 times smaller than the
maximum levels of the FAS). To obtain smooth spectra, the average Fourier amplitude and
pseudo-spectral acceleration spectra were computed from many time-domain simulations
for each noise level. In addition, simulations were conducted using the stochastic model of
Atkinson and Boore (2006) for eastern North America (ENA) for hard rock site conditions,
κ = 0.005 s, and a stress parameter �σ of 210 bar, which is close to the geometric mean
stress parameter determined for eight relatively well-recorded earthquakes in ENA (Boore
et al. 2010).

In addition to noise from ambient (cultural) sources, wind and electronic noise, high-
frequency noise in digital records can also be produced during the ADC process; this can
be particularly important for instruments with low resolution (10 or 12 bit). This source of
noise has been discussed and its effect on derived strong-motion intensity parameters has
been evaluated by Douglas (2003b) and Boore (2003a). Douglas (2003b) found that if an
accelerogram contains more than about ten acceleration levels then accurate SAs between
0.2 and 2 s could be obtained. Boore (2003a) found that ADC can produce apparent
changes in the acceleration baseline leading to low-order polynomial trends that can be
seen in velocity and displacement time series derived by integration; this effect is most
pronounced for low-resolution ADC. It is straightforward to simulate this type of noise
since all that is required is to round the ground acceleration to the acceleration correspond-
ing to the nearest bit level (based on the bit range and full-scale amplitude of the simulated
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instrument); but, because its effect has been discussed previously, we do not consider it in this
article.

3.2 Effects of noise and filtering on high-frequency response spectra

The simulated data were filtered using causal Butterworth filters with a high-frequency
response of ( fc/ f )6, where fc is the corner frequency. The filter was chosen to approxi-
mate the one most commonly used to process the records in the PEER NGA flatfile. Similar
results could be obtained using a cosine half-bell filter such as employed by BAP (Converse
and Brady 1992) if its cut- and roll-off frequencies were chosen appropriately to match the
gain of this causal Butterworth filter. Firstly to study the effect of uniform cut-offs, as are
often used in practice, corner frequencies of 10, 20 and 40 Hz were chosen. However, these
corner frequencies do not account for the noise levels. Therefore, corner frequencies equal
to the frequency fn where a line through the high-frequency noise on a FAS plot (the flat
part of the spectrum) intersects a straight-line fit (on a log-log plot) to the decay of the FAS
before reaching the noise floor (below which no signal can be measured) were also selected
(see Fig. 5). These corner frequencies would be similar to those chosen by applying the
NGA processing procedure mentioned above. These corner frequencies vary with the signal-
to-noise ratio. For example, for simulations of a M 6.5 earthquake at 30 km the corner fre-
quency chosen by this approach varies from 19 Hz for a noise level of 16 gal to 36 Hz for a
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Fig. 5 Average FAS for 500 noise-added simulations, without and with high-cut filtering (solid and dashed
lines, respectively) at the filter corner frequencies indicated by the short vertical lines. The corner frequencies
were determined by the intersection of subjectively chosen lines fit to the high-frequency and sloping portions
of the FAS, as shown for noise of 4 gals (these frequencies are denoted fn elsewhere in this paper, so in this
figure fc = fn ). Also shown is the FAS for a 40 Hz filter for 16 gals noise
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Fig. 6 Average FAS spectra for 100 unfiltered noise-added simulations for ENA. Note the difference in the
frequency axis compared to the previous figure for WNA; this difference is a result of the much lower κ , which
results in the peak of the PSA being at higher frequencies than for the WNA simulations

noise level of 1 gal. The computed FAS for the WNA and ENA stochastic models are shown
in Figs. 5 and 6, respectively.

PSAs were computed from the simulations. To better see the effect of the noise and the
filtering on the PSAs the ratios of the PSAs from the records with noise (without and with
filtering) to the PSAs from the noise-free records were calculated (Figs. 7, 8).

High-frequency PSAs can be controlled by frequencies much lower than the frequency of
the oscillator. For example, PSAs at 100 Hz can be controlled by accelerations at 10 Hz. Anal-
ysis of the NGA Flatfile shows that PGA is generally less than 2% lower than PSA (100 Hz)
(e.g. Idriss 2007), although for hard-rock sites with very low κs close to the earthquake source
this may not always be true. The presence of noise between the frequencies controlling the
PSAs and the frequency of the oscillator may not be important. To summarize this effect
the ratio between the peak high-frequency Fourier amplitude and the Fourier amplitude in
the flat portion at high frequencies was computed and plotted against the maximum ratio of
the PSAs with noise (unfiltered and filtered) to the noise-free PSAs (Fig. 9). For example,
for the WNA simulations the ratios between a representative maximum Fourier amplitudes
and the noise floors are estimated from Fig. 5 (e.g. 17/4.2 = 4.0 for the 16 gal simulations),
which are plotted against the ratio of PSAs with and without noise obtained from Fig. 7 (e.g.
about 1.5 for the 16 gal simulations). Figure 9 allows an estimate to be made of when noise
levels start to swamp the signal and thereby affect PSAs. Note that this figure is for general
guidance only and its intention is not to provide exact values of the expected error.

Figure 9 includes results from both the WNA and ENA simulations. In addition, as a
check of the generality of the result, points from a simulation study in which the “true”
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ground motion was taken to be a filtered version of an actual record with very different
magnitude and distance than assumed for the simulated records are displayed. The use of
ratios of the maximum Fourier amplitudes and the noise floor and the ratios of PSAs with and
without noise independent of frequency (i.e. not the ratios at specific frequencies) reduces
the influence of the shape of the FAS, which explains the similarity in the results for the
WNA and ENA simulations for which the peak ratios occur at much different frequencies,
mainly due to differing κs. Although not identical, the results from the various simulations
are in general agreement and provide an estimate of the error in high-frequency PSA com-
puted from records in which no high-cut filters have been applied. For example, the ratio of
maximum to noise-floor FAS in Figs. 1 and 2 are about 10 and 100 (ignoring the spikes at
50 Hz and 78 Hz), respectively, from which we estimate from Fig. 9 that the error in the PSA
for the unfiltered records would be 15% and less than 2%, respectively. In addition, Fig. 1
indicates that the effect of filtering is, as desired, to reduce significantly the influence of the
noise, with reliable estimates of PSA at oscillator frequencies much above the high-cut filter
corner frequencies.

3.3 Effect of mono-harmonic noise on PSAs

The accelerogram shown in Fig. 2 is used as an example of a time series affected by high-
frequency mono-harmonic noise, which could be expected for instruments located close to
vibrating machinery, for example. Accurate PSAs close to the frequency of the mono-har-
monic noise can be obtained after a applying a notch (bandstop) filter even though, for this
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Fig. 8 Ratios of average response spectra spectra from 100 unfiltered noise-added and noise-free ENA sim-
ulations. The Nyquist frequency of these simulations is 500 Hz. Note the difference in the frequency axis
compared to that used in the corresponding figure for the WNA simulations. The simulations for each noise
level used the same random-number seed, and therefore the added noise only changed amplitude, not spectral
content; this may explain the similarity of the small fluctuations in PSA with oscillator frequency over the
suite of PSAs

time series, this noise is not significantly affecting the computed PSAs (Fig. 10). Notch filters
are more appropriate in this case than standard high-cut filters, which do not fully remove
the noise at 50 Hz and, in addition, affect PSAs at neighbouring frequencies (Fig. 10).

4 Conclusions

In this brief article we have investigated the need for filtering to remove high-frequency noise
in strong-motion records based on some example accelerograms and a series of simulations.
In contrast to low-cut filtering, for which only SDs at periods lower than some proportion
(0.3–0.9 depending on site class, instrument type and tolerence criterion) of the cut-off period
are reliable (Akkar and Bommer 2006), in many situations accurate high-frequency PSAs up
to 100 Hz can be obtained even in the presence of high noise levels with or without filtering
to remove this noise. A useful parameter in determining the probable error in high-frequency
PSAs from acceleration time series with no high-cut filtering is the ratio of the FAS near the
peak portion of the spectrum to that near the noise floor (assuming a white-noise model); if
this ratio is greater than ten, our simulation study shows that the error in PSA will be less
than about 15% even without filtering. If relative noise levels are high, it is important that
high-cut corner frequencies are chosen individually, based on where the Fourier amplitude
spectrum of the signal meets the noise floor. The use of uniform filter corner frequencies (e.g.
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Fig. 9 Ratios of average response spectra from noise-added simulations and noise-free simulations versus
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25 Hz) can lead to incorrect PSAs at high frequencies. Even though mono-harmonic noise is
prominent as spikes on FAS of some accelerograms its impact on PSAs is limited and it can
be reduced further by the application of notch (bandstop) filters.
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